Proof automation can substantially increase productivity in formal verification of complex systems. However, unpredictablility of automated provers in handling quantified formulas presents a major hurdle to usability of these tools. We propose to solve this problem not by improving the provers, but by using a modular proof methodology that allows us to produce decidable verification conditions. Decidability greatly improves predictability of proof automation, resulting in a more practical verification approach. We apply this methodology to develop verified implementations of distributed protocols, demonstrating its effectiveness.
Paper
Modularity for decidability of deductive verification with applications to distributed systems (Marcelo Taube and Giuliano Losa and Kenneth L. McMillan and Oded Padon and Mooly Sagiv and Sharon Shoham and James R. Wilcox and Doug Woos), In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, 2018. [bibtex] [pdf] [doi]