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ABSTRACT

QUIC is a new Internet secure transport protocol currently
in the process of IETF standardization. It is intended as a
replacement for the TLS/TCP stack and will be the basis of
HTTP/3, the next official version of the hypertext transfer
protocol. As a result, it is likely, in the near future, to carry
a substantial fraction of traffic on the Internet. We describe
our experience applying a methodology of compositional
specification-based testing to QUIC. We develop a formal
specification of the wire protocol, and use this specification
to generate automated randomized testers for implementa-
tions of QUIC. The testers effectively take one role of the
QUIC protocol, interacting with the other role to generate
full protocol executions, and verifying that the implementa-
tions conform to the formal specification. This form of testing
generates significantly more diverse stimuli and stronger cor-
rectness criteria than interoperability testing, the primary
method used to date to validate QUIC and its implemen-
tations. As a result, numerous implementation errors have
been found. These include some vulnerabilities at the pro-
tocol and implementation levels, such as an off-path denial
of service scenario and an information leak similar to the
“heartbleed” vulnerability in OpenSSL.
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1 INTRODUCTION

QUIC is a new Internet secure transport protocol, introduced
by Google and currently in the process of IETF standardiza-
tion [17]. It is intended as a replacement for the TLS/TCP
stack for secure, authenticated communication over ordered
channels. QUIC is designed to provide improved perfor-
mance in various aspects, including initial latency, handling
of multiple streams, mobility, data loss detection, and resis-
tance to denial of service attacks. Currently, variants of the
protocol are estimated to carry greater than 5% of traffic
on the Internet, principally generated by video streaming
services [34]. QUIC has recently been selected as the basis of
HTTP/3. Thus, after standardization, it is reasonable to ex-
pect that the protocol will carry a significantly larger portion
of Internet traffic.

The QUIC standard is being developed in the form of an
RFC: an English-language document that provides extensive
guidance for implementers of the protocol, but is nonetheless
ambiguous and broadly open to interpretation. The primary
mechanism for resolving these ambiguities and validating the
correctness of the protocol design is to produce multiple inde-
pendent implementations, and to test these implementations
for interoperability [37]. As a result, these implementations
represent a kind of commentary on the standard document,
providing concrete interpretations where the language may
be vague, unclear or contradictory.

While effective, this methodology leaves something to be
desired from the point of view of clear standardization and
of implementation compliance. First, the knowledge implicit
in the implementations is not captured in any precise and
rigorous way. Second, since the implementations do not rep-
resent the full diversity of behaviors that the protocol allows,
interoperability testing provides very limited test coverage.
Third, because actual protocol compliance is never tested,
interoperability is insufficient to guarantee that current im-
plementations will be interoperable with future ones.

The risks of interoperability testing are illustrated in the
history of SSL/TLS. Consider for example the issue of “ver-
sion intolerance.” According to the protocol, servers pre-
sented with a request for an unsupported protocol version
must refuse the connection. In practice, however, this be-
havior was often not properly tested, since existing clients
did not generate future version numbers. Thus the server
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implementations typically behaved incorrectly. For the same
reason, middleboxes that interpreted protocol messages also
exhibited version intolerance. To cope with this, browsers
implemented voluntary downgrade strategies. These ad-hoc
extensions to the protocol proved to be vulnerable, leading to
downgrade attacks such as POODLE [13]. Attempts to miti-
gate these attacks were then sometimes thwarted by the fact
that clients and servers did not fully implement their proto-
cols. Various other attacks such as SMACK [3] and POODLE
TLS [33] could have been prevented if the implementations
were tested for compliance with the protocol.

From the experience of TLS, it is clear that more than
interoperability is needed. It is important to have an un-
ambiguous statement of the protocol standard, and to test
implementations for actual compliance to the standard, and
not just for interoperability. Moreover, it is necessary to test
implementations in adversarial environments and not just in
the benign environment of other existing implementations.

In this paper, we present a methodology that attempts to
do this by applying light-weight formal methods. We develop
a formal specification of QUIC based on the draft standards
documents, and refine it by applying specification-based test-
ing to the implementations. This simultaneously captures
the protocol knowledge implicit in the implementations, and
tests the implementations for compliance to the protocol.

Specification-based testing uses a formal specification to
both generate test inputs for a system and validate its out-
puts. An example of this idea is the QuickCheck tool in the
Haskell programming language [11]. Using a formal speci-
fication of a function f, QuickCheck randomly generates a
small number of test inputs on which it applies f and verifies
that the output satisfies the specification. The situation with
protocols is, however, more complex than that of functions,
since the tester must produce a sequence of inputs that are
responsive to the prior system outputs. Moreover, a proto-
col consists of multiple roles, and one must verify that the
composition of these roles complies with the overall protocol
specification. This motivates a compositional approach to
specification-based testing that applies ideas from a formal
technique called modular assume/guarantee reasoning [16].

We will describe our new methodology and our experience
in specifying and testing QUIC, including the positive results
that were achieved as well as the limitations and difficulties
we encountered. We found that it was possible to formalize
a substantial part of the QUIC standard. Our specification
is sufficiently complete that a randomized tester taking the
client role can interact with the real servers, successfully
exchanging data without the server detecting protocol errors.

In the process of testing we discovered many errors in
the implementations, including internal errors such as code
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assertion failures and memory faults, and protocol compli-
ance errors. As a side effect, compliance testing also discov-
ered vulnerabilities at both the protocol and implementa-
tion levels. For example, an off-path denial-of-service sce-
nario was discovered and mitigations were added to the stan-
dard. An information leak similar to the “heartbleed” error
in OpenSSL [12] was also discovered in one implementation.
These are described in Section 5.

On the negative side, we found that a large fraction of the
draft standard could not be formalized in a testable way. A
frequent cause of this is that the statements refer to internal
events within the implementation that have no clear defini-
tion or that cannot be inferred by observations on the wire.
We give examples of these and other issues in Sections 4.2
and 6.2, and consider possible solutions to these problems.
In this case study we specify and test only safety proper-
ties. Extending the methodology to liveness and real-time
properties is discussed in Section 6.1. QUIC has some re-
quirements that are well-suited to external specification and
testing, and some that are not. We think this situation is
typical of Internet protocols.

1.1 Related work

There are numerous approaches to generating adversarial
tests for network protocols. We consider first the approaches
that are not based on formal specifications. One approach is
to execute or simulate an existing implementation, and mu-
tate the behaviors of some nodes, for example, by delaying,
duplicating, or modifying messages. An example of this is
Gatling [20] which systematically explores a space of muta-
tions searching for performance bugs. This is an instance of
“fuzz testing”, a general approach that can be highly effective
in discovering bugs and vulnerabilities. However, it tells us
nothing about conformance to the protocol standard, and
does not result in a formal specification of the protocol.

Another such approach is “white-box" testing. Using tools
such as KLEE [8] one traces the internal control flow paths of
the system under test and uses symbolic execution and SMT
solvers [2] to discover input values that stimulate branches
not taken. In fact, there is some work applying white-box
testing to QUIC [32]. That work does not address protocol
specification or compliance, though it is not impossible in
principle. Interoperability testing using this approach [29, 32]
has the disadvantage noted above of being insufficiently
adversarial.

Another alternative to formally specifying the wire pro-
tocol is to produce a formally verified reference implementa-
tion [4] or simply to prove properties of an existing imple-
mentation [10]. Again, there is no check of compliance to a
common standard in these works.
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Techniques that do address compliance include model-
based testing (MBT) [7, 28, 35] and its precursors in the area
of protocol conformance testing (see [26] for a survey). In
MBT, an abstract model of the system is constructed, con-
taining controllable events that are generated by a tester, and
observable events that are generated by the system under test.
The protocol specifications are given as finite-state machines
(FSMs). This entails either abstracting away non-finite as-
pects of the protocol or restricting the model to some fixed
sample of data values. The finite-state machine is systemat-
ically explored to generate test scenarios, either online or
offline. This effectively provides a heuristic for generating ad-
versarial tests. With an FSM model, some method is needed
to fill in the concrete data parameters of messages. This may
be done in a systematic way as in [35] or an ad-hoc way
as in [7]. Generally, the need to extend FSMs in some way
to account for data leads to significant complexity in these
formalisms.

The compositional testing approach used here differs in
several significant ways from existing work on MBT. First, we
do not model QUIC as an FSM. A finite-state machine cannot
communicate correctly with a QUIC node because of un-
bounded non-determinism in the node’s responses. Instead,
we take a constrained-random approach to generating tests
based on a non-finite-state specification. Second, because we
specify a closed system of communicating agents, the same
specification is used to generate tests for both client and
server roles. Compositional testing has the formal property
that, if the system as a whole violates its specification, then
some component must exhibit a failing test. This property
is crucial for validating a specification. Without it, we may
find that a legal output of one node is an illegal input for its
peer. Thus, two nodes that pass all their tests may still fail
when composed on the network. Compositional testing ex-
poses such weaknesses in the specification. This is important
when distilling a specification from implementations. Finally,
work with finite-state models usually considers only some
restricted aspect of the protocol. For example, [28] considers
the connection state machine of TCP, but not TCP’s data
transmission. A similar approach is applied to TLS in [3, 7].
Here, we consider the full protocol state including the secu-
rity handshake, with unbounded data, unbounded streams,
unbounded connections and so forth.

Another effort that infers protocol specifications experi-
mentally from implementations is the Network Semantics
Project [5] that has developed a formal specification of TCP.
In this work, the formal specification is used as a test or-
acle, that is, traces captured on the wire are checked for
compliance. The specification is not used, however, for test
generation. Checking traces can determine when the specifi-
cation is too tight. By contrast, our compositional approach
can also detect when the specification is too loose. That is,
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suppose the specification of an output of a protocol node is
too weak. This same specification is used to generate inputs
for its peer. Thus, we can detect the weakness by the fact that
the peer misbehaves or flags a protocol error on a generated
input. Without compositionality, we would almost certainly
miss needed requirements, as QUIC is an order of magnitude
more complex than TCP, and inferring formal requirements
from the standard is challenging.

In other work, software API specifications are inferred au-
tomatically from run-time traces (e.g., [1, 9, 30, 31]). This ap-
proach typically learns only a finite-state abstraction, which
insufficient, as noted above. There has in addition been a
great deal of work devoted to abstract modeling of network
protocols that does not connect the models to implementa-
tions (e.g., [19, 36, 38]).

The general approach of compositional or assume/guaran-
tee testing that we take here was introduced for software ver-
ification [16] and has been applied to hardware [21]. Because
the specification state and the messages contain significant
amounts of data, these methods cannot be applied directly
to QUIC. To solve this problem, we develop a specification
methodology and corresponding optimized algorithms. This
allows compositional testing to be applied in practice to
complex, layered Internet protocols such as QUIC. The chal-
lenges in applying specification-based testing to QUIC are
discussed in Sections 4 and 6. These were not insuperable,
but they required us to adapt our approach to specification
and randomized constraint solving in a number of ways.

To summarize, existing methods applicable to QUIC do
not address the need we identify here to (1) distill a common,
unambiguous wire specification from implementations and
(2) test compliance of implementations in an adversarial
environment.

Ethics statement: This work does not present ethical issues,
as we handle no personal data.

2 AN INTRODUCTION TO QUIC

The QUIC protocol can be conceived approximately as a
stack of layers, each of which provides one aspect of the
overall transport service. These layers are depicted in fig. 1.
At the bottom of the stack, UDP provides network services.
Above this the packet protection layer provides secrecy by
encrypting QUIC packets, which are encapsulated into UDP
datagrams. Above this, the packet protocol provides loss
detection using sequence numbers. Frames contain (among
other things) ordered stream data and are encapsulated in
packets. Each data frame carries a stream identifier, a se-
quence of bytes, and the offset of those bytes within the
stream. This allows the stream data to be reconstructed at
the receiving end in spite of datagram re-ordering and also
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supports multiple independent streams. The security hand-
shake protocol, a modified version of TLS 1.3, exchanges
handshake messages using the frame protocol. Once a shared
secret has been established by the handshake protocol, keys
can be derived for encryption and decryption by the protec-
tion layer. At the top is the application layer, in which peers
send and receive reliable, secure, authenticated data streams.

Application |< ————————————————— > Application

Security (TLS) |« || security (Ls)
! 1 ! i

| Frame |* ———————————————— >‘ Frame |
| |
Packet J* ———————————————— > Packet J

Protection i* ————————————————— *  Protection

Client Server

1]

Figure 1: QUIC protocol layers. Arrows represent de-
pendencies between layers.

This layered view of QUIC is useful, but somewhat mis-
leading. We can think of each layer as providing a virtual
connection between the peers, and relying on the layers be-
low to implement this connection. However, the layering
is not clean, as lower layers also rely on services of higher
layers. Specification and testing might be easier if the proto-
cols were cleanly layered. As we will see, it is still possible
to exploit the decomposition of the protocol into events at
different layers to improve the performance of testing.

The basic unit of communication in QUIC is the connec-
tion. A connection is a point-to-point channel that provides
multiple independent data streams. A connection is estab-
lished when a client sends an initial packet to a server. This
packet provides a connection identifier (CID) to the server, a
string of bytes that uniquely identifies the connection. It also
contains a frame with the first security handshake message.
The server responds with its own initial packet, containing
the server’s CID and the second handshake message. Sub-
sequent handshake packets are protected with handshake
keys derived from the initial messages. Once the handshake
is complete, session keys are available and transmission of
session data commences. At this point, each side can also
transmit additional secret CID’s. These are used to prevent
tracking of the connection by third parties, for example when
one of the peers migrates to a different network location.
A special 0-RTT packet type allows the client to send early
session data using a pre-shared key from a previous con-
nection (a feature of TLS 1.3). QUIC packet types are thus
partitioned into four encryption levels using different keys:
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initial, handshake, 0-RTT (for early data) and 1-RTT (for
normal data with forward secrecy).

In addition to CID’s, QUIC packets contain unique se-
quence numbers that are used to detect packet loss. A peer
sends acknowledgment (ACK) frames to indicate packet se-
quence numbers that have been received. A packet that is
not acknowledged after some length of time is considered
lost. Rather than retransmit the packet, the peer retransmits
its frames as needed in subsequent packets with different
sequence numbers.

The protocol has a variety of frame types that are used
for data transmission, loss detection, flow control, connec-
tion state management, management of CID’s and so forth.
The STREAM and CRYPTO frame types contain stream data
and security handshake message data respectively. As noted,
ACK frames contain acknowledgments. The MAX_DATA
and MAX_STREAM_DATA frames are used by receivers to
limit the amount of data a sender may send on a connection
or stream. Other frames allow the sender to indicate that
it wishes to send data, but is blocked by flow control, or to
terminate a stream or connection, to stop transmission on a
stream, to provide fresh CID’s or retire them, and to validate
that a peer controls a particular IP address.

3 SPECIFICATION METHODOLOGY

We present the specification and testing methodology infor-
mally, using examples. For a formal treatment of the under-
lying theory and algorithms, see [24].

We will specify the QUIC wire protocol using an abstract
machine that monitors protocol events. In concept, this ma-
chine tracks all the QUIC-related events on the Internet.
When an event occurs (say, the transmission of a QUIC
packet) the machine first consults its state to determine
whether the event is in fact legal according to the proto-
col. If so, it updates its state to reflect the occurrence of the
event.

The specification is coded in a language called Ivy [23, 27].
In Ivy, the events associated with transmission of packets
are modeled by an action such as the following:

action packet_event(src:endpoint,dst:endpoint,content:packet)

This describes a collection of events having three parame-
ters: as source endpoint, a destination endpoint, and packet
contents. The ‘endpoint’ datatype might be, for example, a
representation of an IP address and port number, while the
‘packet’ would a record type having fields representing the
packet contents.

The protocol state is stored in a collection of mathematical
functions and relations. For example, suppose our packets
have sequence numbers and our wire specification has a
requirement that sequence numbers are never re-used by
a source endpoint. To determine whether a packet event is
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legal, we record in the protocol state the set of sequence
numbers used by each endpoint, using a relation such as:

relation seq_used(S:endpoint,N:seq_num)
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those controlled by its environment. Since we want the tester
to generate only the latter, we add this requirement:

The intention is that this predicate is true when endpoint
S has transmitted a packet with sequence number N. To
express our specification, we first give the initial state of the
monitor, like this:

before packet_event {
require generating — src # a

}

after init {
seq_used(S,N) := false
}

Suppose we now want to test our protocol instance through
the network using UDP. We create a shim that connects
abstract packet events to actual UDP packets. The output
part of the shim might look like this:

This initially sets seq_used(S, N) to be false for all values of
S and N. Now we give the monitor code that runs before
each packet event:

before packet_event {
require —seq_used(src,content.seq);
seq_used(src,content.seq) := true

}

after packet_event {
if generating {
call udp.send(src,dst,serialize(contents))
}
}

The ‘require’ statement says that, when a packet event oc-
curs, its sequence number has not already been used by the
source endpoint. If this requirement is met, we record the
fact that the source used the given sequence number. As
a result, if any endpoint sends two packets with the same
sequence number, the condition in the ‘require’ statement
will be false, and we say the protocol has been violated. No-
tice that our specification is not an abstract implementation
of the protocol, but is instead an executable monitor that
observes the behavior of all protocol nodes.

To monitor an actual execution of the protocol, we write
a ‘shim’ that captures the packet events, for example by trac-
ing packets on the wire. For each packet, the shim calls the
‘packet_event’ action, invoking the above monitor code and
flagging an error if a ‘require’ condition is false. In this way,
we can watch the behavior of a collection of processes in-
teracting on the network and check whether their collective
behavior complies with the protocol specification.

In addition, the Ivy tool can compile a generator that pro-
duces random sequences of events that conform to the spec-
ification. At each step, the generator chooses an action at
random (say, ‘protocol_action’) and builds a constraint over
the action’s parameters that is true exactly when all the ‘re-
quire’ conditions hold. This can be seen as either symbolic
execution [6] or a weakest precondition computation [15].
With the help of an SMT solver [2] the generator then ran-
domly selects a valuation of the parameters satisfying the
constraint. The result in our example will be a random se-
quence of packet events in which no sequence number is
sent twice by any endpoint.

Now suppose we wish to test a running instance of our pro-
tocol located at network address a. We partition the packet
events into those controlled by the instance under test, and

Here ‘udp.send’ is a binding for an underlying operating sys-
tem service. This code says that after any generated packet
event, the serialized packet contents should be sent in a UDP
datagram with the given source and destination. The input
part of the shim might look like this:

implement udp.recv(src:endpoint,dst:endpoint,data:bytes) {
ifsrc=a{
call packet_event(src,dst,deserialize(data))
}
}

This implements a call-back from the UDP interface that
occurs when a datagram is observed. If it originates from
endpoint under test, we create a corresponding packet event.
If this event violates the requirement that endpoint a not
re-use a sequence number, then an error is reported and the
test stops.

Of course, the above assumes that we have the capability to
generate IP headers with any source endpoint and to observe
all datagrams produced by the instance under test. If this is
not the case, we might open just a few sockets at specific
endpoints and constrain the generator to use only these. We
could also, for example, communicate packets to the instance
by ‘mocking’ the sockets API that it uses. The main point
is that the shim is just an ad-hoc mechanism that connects
abstract events in the specification to real events in a system.
This allows to write the specification in a generic way, and
to adapt it various testing scenarios. It lets us use resources
such as operating systems, networks and compilers to test,
rather than running in a simulated environment.

If our protocol has multiple roles, say, ‘client’ and ‘server’,
we can constrain the environment to generate only events
controlled by one role or the other. Thus we can use the
same specification to test either clients or servers. This is
an example of the usefulness of the assume/guarantee par-
adigm: When testing the server role, we effectively assume
that the client-controlled events are correct, since they are
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generated from the specification. However, we must guar-
antee that server-controlled events are correct (that is, we
monitor these events and stop the test if they are incorrect).
Conversely, when testing the client role, we assume correct-
ness of server-controlled events, and guarantee correctness
of client-controlled events. Assume/guarantee testing has an
important formal property: if the composition of the client
and server ever violates the specification, then there must
exist a failing assume/guarantee test for one of the two roles.

4 QUIC PROTOCOL SPECIFICATION

We now consider the formal specification of the QUIC pro-
tocol in the Ivy. In the sequel, we will use ‘our specification’
to refer to this specification, and ‘the standard’ to refer to
the draft RFCs. Our specification and all code needed to run
tests are available in open source [22].

4.1 Extensional and Intentional Specs

We wish to specify the protocol here in terms of behaviors
visible on the wire, a style of specification we will refer to
as extensional. This differs markedly from the approach of
the RFC, which tends to describe the protocol in terms of
how it should be implemented internally, a style we will
refer to as intentional. An intentional specification is not
well suited to testing because it refers to internal events that
are not visible to the tester. On the other hand, an extensional
specification is weaker, since it considers a behavior to be
a protocol violation only if an external observer can prove
that the protocol was violated.

As an illustration, the specification of TCP in [28] is in-
tentional. In monitoring network traces, it was found that
inferring non-deterministic internal events was too costly,
and thus ‘debug trace’ events had to be used to resolve these
choices [28, p. 12].

Here, we do not monitor any internal implementation
events. Having said this, our specification does have some
intentional aspects, for reasons of tractability of test genera-
tion. We formally specify actions at each layer of the protocol,
from the application layer down to the packet layer. Some
of these events (at the frame and security layers) are not
externally visible. They are, however, easily inferred from
the visible events. In Section 6 we will revisit the question of
extensional specification and consider some aspects of the
standard that cannot be captured in this way.

4.2 The packet protocol

The packet protocol is specified in terms of a single action
corresponding to transmission of a QUIC packet:

action packet_event(src:endpoint,dst:endpoint,content:packet)
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The packet protocol has four primary functions: (1) identify-
ing connections, (2) generating sequence numbers for use in
loss detection (3) determining the encryption level and (4)
carrying frames. Note that actual retransmission in response
to packet loss is performed at the frame layer. Packets are
never retransmitted in QUIC.

before packet_event {
var src_cid := content.src_cid;
var dst_cid := content.dst_cid;
require connected(dst_cid) V dst_cid = nonce_cid(src_cid);
require happens_after_init(contents) — connected(dst_cid);
if content.long {
require connected(dst_cid) — connected_to(dst_cid) = src_cid;
} else {
src_cid := connected_to(dst_cid)
}
var enc_lev := rttl if — content.long
else initial if content.ptype = pinitial
else handshake;
require —seq_used(src_cid,enc_lev,content.seq);
seq_used(src_cid,enc_lev,content.seq) := true;
require frame_queue.count(src_cid,enc_lev) > 0;
require content.payload = frame_queue.frames(src_cid,enc_lev);
frame_queue.frames(src_cid,enc_lev) := frame_array.empty

Figure 2: Simplified specification of packet events

A simplified specification of ‘packet_event’ is shown in
Fig. 2. The first task of a QUIC endpoint on receiving a packet
is to associate it with a connection. We model a connection
as a pair of unique identifiers associated with the connected
application-layer processes. Since these are in one-to-one
correspondence with initial CID’s, we equate these two types
of identifiers. We represent the set of established connections
in the network with the following function and relation:

relation connected(C:cid)
function connected_to(C:cid) : cid

A CID is ‘connected’ if it is an end of some connection. In this
case, the function ‘connected_to’ tells us the CID of the other
end. These state variables are updated by an application layer
event called ‘establish’ which establishes a connection.

The code that infers the connection from the packet con-
tents is in lines 2 to 10. The long-format packets have both a
source and a destination CID, while the short-format packets
contain only a destination CID. A client initiates a connection
by sending an initial packet. At this point, the client does not
know the server’s CID and it therefore uses a nonce value for
the destination CID. However, the standard says that after
receiving an initial packet from the server the client must
switch to the CID provided by the server.

Here, we observe a difference between an intentional and
an extensional specification: The moment when the client
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‘receives’ (processes) the server initial packet is not observ-
able on the wire. If we observe a client packet, we can’t
tell whether it was sent before or after a given server ini-
tial packet was processed unless there is a definite causal
relationship between the two packets. Therefore, in our ex-
tensional specification, we require this: if a packet logically
must happen after the peer’s initial packet, then it uses the
peer’s CID. This is expressed at line 5 using a predicate ‘hap-
pens_after_init’, which is defined in Ivy as follows:

definition happens_after_init(P) = P.ptype # initial V P.contains_ack

That is, the only packets that are not causally dependent on
the peer’s initial packet are packets of initial type that do not
contain ACK frames. Overall, the specification states that the
destination CID is either the nonce or the peer’s CID, and
must be the latter if the packet happens after the peer initial
packet. For long packets, if the peer’s CID is used, the source
CID must be connected to it. For short packets, the source
CID is inferred from the destination CID. We have simplified
here, since we do not consider that new CID’s may be issued
as aliases for the originals, and we do no consider RETRY
packets.

Next, we determine the packet’s encryption level based
on its type (lines 11 to 13). For simplicity, we ignore 0-RTT
packets. Then we consider packet sequence numbers. For
correct packet loss detection, we require that the packet
numbers are not re-used within a given encryption level.
This requirement is reflected in lines 14-15.

The standard also states the sequence numbers of initial
packets must be begin with zero and be strictly increasing.
Here again, we see a difference between intentional and ex-
tensional specifications: Packet zero may be dropped, and
packets observed on the wire may be re-ordered at the net-
work layer, either because the network itself re-orders them,
or because the implementation packs them into UDP data-
grams out-of-order. For this reason, we can only infer that
the packet numbers are non-increasing in the case of two
packets that are necessarily causally ordered. There is no
clear reason for this requirement, however. In testing, the
implementations were found to be insensitive to arbitrary
ordering of the sequence numbers of initial packets. Thus,
we chose to drop this requirement as not usefully testable.
This is one of many such intentional statements in the stan-
dard. Another example is the statement that the nonce CID
must be ‘unpredictable’. Clearly there is no general test for
unpredictability, so compliance to this statement must be
verified by some means other than testing.

Finally, we connect the packet and the frame protocols.
Frame protocol events generate frames and enqueue them
for transmission in packets. There is a frame queue for each
connection end and encryption level. In lines 16-18, we re-
quire that there is at least one queued frame and that the
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packet payload is equal to the sequence of queued frames.
Finally, we clear the queue, so that each frame is transmitted
in at most one packet.

In this simplified description, we have omitted some ad-
ditional requirements in the packet protocol relating to ac-
knowledgments of acknowledgments and to detection of
migration of the peer.

4.3 The frame protocol

Most of the content and complexity of QUIC is in the frame
protocol. There are 20 frame types, each of which is mod-
eled in Ivy using a record type. As an example, Figure 3
gives a simplified specification for STREAM frames, which
carry application data. The stream frame action is defined as
follows:

action frame.stream.event(f:frame.stream, src_cid:cid, dst_cid:cid,
e:encryption_level)

For each frame type, the parameters of the corresponding
action are the frame content, the source and destination
CID’s and the encryption level.

before frame.stream.event {
require connected(dst_cid) A connected_to(dst_cid) = src_cid;
require e = rttl A sec.established_1rtt_keys(src_cid);
require f.offset + flength < app.data_end(src_cid,f.id);
require f.data = app.data(src_cid,f.id).segment(f.offset.f.offset+f.length);
require f.fin < app.closed(src_cid,f.id)
A foffset+f.length = app.data_end(src_cid,f.id);
require f.offset + flength < stream_max_data(dst_cid,fid);
require stream_id_allowed(dst_cid,f.id);

}

after frame.stream.event {
call enqueue_frame(src_cid,f,e);

}

Figure 3: Specification of STREAM frame events

A stream frame ‘f” transmits ‘f.length’ application bytes
at offset ‘f.offset’ from stream id ‘f.id’. Lines 2 to 3 say that
the source and destination CID’s must be connected, and the
encryption level must be ‘1-RTT’ (that is, STREAM frames
must be sent only with 1-RTT encryption). When a frame
event occurs, we also require that the necessary encryption
keys have been generated by the security layer. Lines 4 to 7
relate the STREAM frames to the application layer. They
state that the bytes transmitted must be in the range sent
by the application, that the data transmitted must be equal
to the segment of the application data of the given length
at the given offset. The frame contains a ‘fin’ bit indicating
the end of the stream. It is true if and only if the application
has finished transmitting and the frame contains the end of
the stream (line 6). Lines 8 to 9 relate to flow control. They
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state that the transmitted bytes do not exceed the maximum
allowed by the receiver and that the sender does not attempt
to use a steam ID larger than the receiver allows or attempt
to use a new stream id that it is not allowed to open. After
a frame event the action ‘enqueue_frame’ is called to en-
queue the frame for eventual transmission in a packet. In
this simplified description, we have omitted some additional
bookkeeping related the total number of transmitted bytes
on a connection and recording of finished streams.

We briefly consider the other frame types. The ACK frame
acknowledges receipt of ranges of packet sequence num-
bers. The specification requires that each acknowledged se-
quence number has been used by the peer. There are frames
that affect stream and connection state (such as CONNEC-
TION_CLOSE, RST_STREAM and STOP_SENDING). Various
flow control frames (MAX_DATA, MAX_STREAM_DATA,
MAX_STEAM) affect the flow control state that is used in
the specification of STREAM frames. CRYPTO frames are
similar to STREAM frames but carry cryptographic hand-
shake messages generated by the security layer. Other frames
allow distribution of fresh CID’s (to prevent tracking of mo-
bile clients) and verification of network paths, among other
functions. Each of these is specified in the same style as the
STREAM frame above (and may include various updates of
the protocol state). The standard states that all frames are
idempotent which we take to mean that a frame may always
be repeated, and repeating it has no effect on the protocol
state. Our specification reflects this, in the sense that state
updates can never disable a frame once it is enabled.

4.4 Security and application layers

The security layer has events corresponding to sending and
receiving of cryptographic handshake messages and the es-
tablishment of encryption keys, which are used at the pro-
tection layer. The standard states that the TLS 1.3 protocol is
used for the cryptographic handshake. We generate events
at the security layer during testing by an actual implementa-
tion of TLS. This illustrates an important practical aspect of
compositional testing. If some component of a system lacks
a formal specification, or if specification-based generation
for a component is intractable, we can treat it as a ‘black
box’ (see [24] for details). There is some cost in generality of
testing in this approach, but it allows us to circumscribe the
formal specification task. For various technical reasons, we
we also treat the encryption and decryption services, the op-
erating system and the network itself as black boxes. There
is one specification of TLS that we do rely upon however.
That is, TLS allows user data to be encapsulated into hand-
shake messages. QUIC uses this to exchange initial values
of various transport parameters. We do formally specify the
behavior of this interface. In the future, it may be possible
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to improve the generality of testing by generating TLS 1.3
behavior from a formal model, such as [14]. However, this
must be done in such a way that it does not require inverting
hash functions or other intractable operations that cannot
be handled by SMT solvers.

At the application layer, there are a few simple actions
related to requesting, establishing and closing of connections
and streams, and to sending and receiving of stream data.
The corresponding events at the API of a QUIC library may
be visible or invisible, depending on the test set-up. When
invisible (for example, because the QUIC library is linked to
an actual application in the test) they can be easily inferred
from the packet traffic.

4.5 The test shim

As in section 3, we wrote a test shim in Ivy that connects
packet events in the specification to actual packets on the
wire. This shim is complex because it includes packet encod-
ing and decoding, that depend on QUIC’s fairly elaborate
encryption and decryption scheme.

The test shim also connects the security layer events to
real instances of TLS. When (the real) TLS outputs a message,
the shim translates it to a send event in the security layer
of the specification. Correspondingly, when a receive event
occurs in the security layer, the shim calls the API of TLS
to deliver the received messages. The net effect is that the
instances of TLS in our tester exchange messages with the
TLS instances inside a QUIC implementation via the QUIC
frame protocol.

Finally, events at higher layers of the protocol in the im-
plementation under test are not visible to the tester. We
designed the specification, however, so that these invisible
events could be easily inferred. On observation of a packet,
the shim scans it for indications of frame, security and appli-
cation layer events, calling the appropriate actions. This is a
small overhead, requiring only 28 lines of Ivy code.

5 RESULTS

We now consider some of the results of testing actual im-
plementations of the evolving QUIC draft standard, using
our evolving formal specification. We tested four implemen-
tations of QUIC, which were chosen because they had the
best results in the interoperability testing matrix. One was
only briefly tested early in the development of the specifica-
tion and was abandoned due to TLS 1.3 compatibility issues.
For each implementation, we tested a demonstration HTTP
server based on a QUIC library, communicating with the
server via UDP (testing clients is also possible in the frame-
work). Somewhat arbitrarily, test runs were limited to 100
protocol events and a single QUIC connection. We also ran
these tests in batches of 1000 on the same server instance, to
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test its long-run behavior. In addition to specification viola-
tions, we recorded crashes and failures to make progress (as
indicated by anomalously low transfer of data).

Testing revealed 27 errors in the server implementations,
some of which reflect issues in the draft standard. We detail
here only issues that we believe to have been fixed. Table 1
shows a breakdown of the issues found, categorized by our
estimation of their root causes, based on developer feedback.
These categories are: standard requirement not implemented,
unexpected message order, unexpected parameter value, mes-
sages racing timers, arithmetic overflow, and code paths that
had not been exercised for various reasons. A last category is
‘unknown’ reflecting errors which were fixed, but whose root
cause was not communicated to us by the developers. For
each category, the table gives the number of errors detected
and the mode of detection: crashes (including internal asser-
tion failures), specification violations, and lack of progress.
We also give the number of errors that were deemed to be
exploitable by an attacker, the number that were caused at
least in part by an ambiguity or contradiction in the standard,
and the number that were caused by an adverse stimulus —
a message sequence that would occur only in unusual or ad-
verse conditions and not in the expected flow of the protocol.
We do not count crashes per se as exploitable, though some
might be exploitable for denial of service. We describe some
of the errors detected in further detail below.

Protocol errors. Of the 13 protocol errors we detected, five
were due to a protocol requirement simply not being imple-
mented. One server failed to respect a prohibition on sending
a packet solely to acknowledge an ACK-only packet. Two
failed to obey a rule that allows client migration to be de-
tected only if a packet with the highest-observed sequence
number arrives from a new address. One did not respect a
rule on error codes in CONNECTION_CLOSE frames and
one ignored STOP_SENDING frames. We attribute the fact
that these omissions were not previously detected to the fact
that previous testing had not been based on a thorough wire
specification (though ad-hoc compliance tests were done).

Four violations were caused by unexpected messages or
unusual parameter combinations. One server failed to open
a stream on receipt of a frame other than a STREAM frame (a
result of packet re-ordering). Another error resulted from an
initial packet arriving after the connection was closed. One
server failed to handle a STREAM frame without an offset
field, and one failed to handle a MAX_STREAM_ID frame
with an unexpected value. In a similar vein, a race between
an arriving CONNECTION_CLOSE and a timer resulted in
illegal sent messages.

One violation was due to an integer overflow in the value
of the MAX_STREAM_DATA that would have caused a dead-
lock after transfer of 4GB on a stream. In two further cases,
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we discovered errors because randomized tests exercised
code that was not well tested previously. On detecting mi-
gration, one server sent a PATH_CHALLENGE to the wrong
address. One handled flow control incorrectly, resulting in a
data leak described below.

Crashes. Twelve of the errors resulted in crashes, due either
to memory faults or internal assertion failures. The most
common cause of these was a frame arriving out of the ex-
pected order. All crashes were fixed, but we are aware of
the root causes of only eight. In two cases a message arriv-
ing early caused the use of uninitialized data. In three cases
an early-arriving message caused freeing of resources that
were later used. In one case, an incoming message raced
with a timer. In two cases, previously unexercised code was
executed.

Ambiguities and contradictions. Four of the errors were
caused at least in part by ambiguities or contradictions in
the standard. For example, one server crashed because of
a negative deadline given to a timer library. This resulted
from the failure of pseudo-code in the loss recovery stan-
dard [18] to handle a case of unsigned integer underflow. This
was later corrected in the standard. Another error (noted
above) related to a state machine for stream senders in the
standard that did not enumerate all the conditions that can
open a stream. An ambiguity respecting the argument of
MAX_STREAM_ID frames resulted in another possible vi-
olation (this was cleared up in version 17, unrelated to this
work). In a possible contradiction, the standard stated that an
APPLICATION_CLOSE packet must appear in every frame
after the application closes the connection, but elsewhere it
said that APPLICATION_CLOSE may not appear in initial
frames. A violation of the latter condition resulted in a (mi-
nor) information leak in one server. These are cases where
testing of implementations revealed information about the
standard and helped to disambiguate it.

Vulnerabilities. In four cases, protocol or progress viola-
tions revealed as a side effect possible vulnerabilities in the
implementations or the standard itself. One of these is a pos-
sible denial-of-service (DoS) attack by an off-path attacker.
We discovered a trace in which a server ceased at some point
to send any packets. Further analysis revealed that this was
caused by a rapid switching of the client IP address between
two values.

The specification states that when a client migration to
a new IP address is detected, the server should validate the
new network path by sending a PATH_CHALLENGE frame
and waiting for a corresponding PATH_RESPONSE frame,
indicating that the client in fact controls the new IP address.
Before sending the challenge, however, the server waited
for a timer to expire. Since the timer was reset each time
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Table 1: Summary of errors detected

Detection
Root cause Errors || Crash | Spec | Progress || Exploitable | Ambiguous | Adverse
Not implemented 5 0 5 0 0 0 2
Message order 7 5 2 0 1 3 7
Parameter 3 0 2 1 1 1 3
Race 3 1 1 1 1 0 3
Overflow 1 0 1 0 0 0 0
Unexercised 4 2 2 0 1 0 3
Unknown 4 4 0 0 0 0 ?
Total 27 12 13 2 4 4 18/23

the client switched address, the challenge was never sent,
resulting in a starvation scenario. This was detected only
because the source IP address was randomized by the tester.
In a non-adversarial test environment, this case would occur
with negligible frequency.

This starvation scenario in turn suggested a vulnerability
of the protocol itself to DoS. The attacker is assumed to be
able to capture packets on the network and replay them from
a different IP address in such a way that some fraction of the
copies arrive before the originals. This causes the server to
repeatedly detect migrations, and thus prevents any transfer
of data. Mitigations for this off-path migration attack were
included in a later version of the standard.

Another interesting case was a data leak similar to the
“heartbleed” vulnerability discovered in SSL/TLS [12]. This
was detected when a server sent incorrect bytes in a retrans-
mission of a stream frame, violating the specification. The
root cause was related to an error in the handling of flow
control and the packing of frames in packets, which may
have been exposed by adverse generation of flow control by
the tester. The result was a STREAM frame that was longer
than intended, causing arbitrary server memory contents to
be leaked to the network. This was easily observed in the
transcript of the test, as the ASCII text of an HTML page
abruptly changed to binary data. The reason it was detected
as protocol violation, however, is that the extra bytes did not
match bytes sent in a previous stream frame at the given
offset.

Another possible data leak was an APPLICATION_CLOSE
frame sent in response to the unexpected initial packet men-
tioned above. This violated the protocol and also sent ap-
plication data in the clear. Finally, a progress issue revealed
a case in which a server allocated a number of records in
memory proportional to the gap in packet sequence numbers,
allowing an attacker to effectively stop the server. This issue
was known but had not been repaired and was discovered
because of a random choice of packet numbers.

Tester performance. As mentioned, the SMT-based tester
generated protocol events at approximately 10Hz. Most of
the errors we found occurred within a few minutes of test-
ing on a single core. The most infrequently occurring error
was the heartbleed-style data leak described above, which
occurred roughly every 20,000 events (about 40 minutes of
testing). The most time-consuming aspect of testing was
triage of the errors, refining the specification, and commu-
nicating with the implementation developers to diagnose
and repair the issues. To give a sense of the time scale, the
total amount of test engineer time we spent on actual testing
was approximately four weeks. The largest number of true
errors discovered by a single test engineer in one day was
three, with a typical value being one. Using cloud resources
might produce further results as the rate of error discovery
declines.

Analysis. Despite some limitations discussed in the next sec-
tion, we found that the specification-based testing approach
was effective in meeting the objectives we outlined. First,
testing allowed us to significantly refine our formal specifica-
tion. In many instances, we either loosened the specification
(because of an unexpected message sent by an implemen-
tation) or tightened it (because an implementation flagged
a protocol error due to a specification-generated message).
Moreover, the specification-based tester was quite effective
in uncovering implementation errors.

In the errors discovered we can observe two important
advantages of the methodology. In 13 cases the errors were
discovered because we monitor for compliance to a specifi-
cation. Further, of the 23 to which we can assign root causes,
18 were found because of adverse stimulus (the remaining
five were compliance violations occurring in normal pro-
tocol cases). Only two errors were previously known (but
unfixed) issues and these had not to our knowledge been dis-
covered by previous testing. This is a good indication that the
approaches of interoperability testing and manual directed
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or fuzz testing can be usefully augmented by specification-
based methods.

As a point of comparison, interoperability testing of two
QUIC implementations using symbolic execution [32] dis-
covered two client API bugs and three crashes, based on
manually created scenarios. No protocol violations were
discovered, and only one error required more than a sin-
gle message. A related approach applied to different pro-
tocols [29] considered only single-message errors. On the
other hand, all of the bugs we found required a sequence of
messages to be exchanged. This may indicate the difficulty
of exploring deep protocol interactions with symbolic exe-
cution. Moreover, driving one implementation to provide a
diverse stimulus for another implementation may be more
difficult than using an abstract specification. More work is
needed to answer these questions. Symbolic execution could
in principle be combined with the present method and may
improve coverage. We leave this for future work.

6 EXPERIENCES

In this section we consider some of difficulties we faced in
applying the methodology, limitations of the current work,
and lessons learned.

6.1 Completeness of the specification

We formally specified most features of the protocol, omitting
0-RTT data, version negotiation, retry messages, and one
frame type (RETIRE_CONNECTION_ID). We focused on
messages and features needed to produce basic protocol
functionality or produced by the implementations. Overall,
we found the effort required to create the specification and
track changes through nine drafts to be manageable. The
most time-consuming aspect was tracking changes in low-
level formatting and encryption.

Our formal specification captures only safety properties
of the protocol. These are properties whose violation can be
detected by observing the system for finite time. An impor-
tant class of properties that we do not cover is liveness. A
liveness property requires that some condition must eventu-
ally hold, but do not specify a finite deadline. By their nature,
such properties are difficult to test, as a message that is not
observed may simply have been dropped or delayed. There is
some work in this area [25] but detecting liveness violations
by testing is heuristic at best. There are nonetheless many
statements in the standard that can only be interpreted as
liveness properties and we do not capture these. A good ex-
ample is retransmission: our specification allows any data
to be retransmitted, but does not require that lost data is
eventually retransmitted.

Quantitative-time properties are another important class.
We do not cover these because our tester does not run in
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real time. In particular, we do not cover any statement in the
QUIC document on recovery and congestion control [18].
In principle, we could solve this problem by testing the im-
plementations in virtual time. This would require creating a
specialized test harness for each implementation.

Finally, we do not capture protocol error handling require-
ments and rather focus on the implementations’ response
to legal inputs. In principle, we could use the legal behav-
iors generated by our specification as seeds for generating
illegal behaviors (i.e., fuzzing) and use this to test a separate
specification of error handling. We have left this for future
work.

6.2 Extensional specification

We found that specifying extensional properties sufficed to
produce a tester that successfully interacts with the real im-
plementations. We also found that a large portion (perhaps
most) of the statements in the standard were not usefully
testable. Externally detectable violations of such statements
occur only in rare cases, and these do not affect interoper-
ation with the existing implementations. For example, in
the QUIC standard there are cases when a received packet
disables a given behavior. Since packets may be dropped
internally (say, because the needed decryption keys have not
yet been computed) we cannot definitely infer on observing
the behavior that the protocol has been violated. Nonethe-
less, such statements may have heuristic value, for reasons
of performance, obfuscation, or resistance to denial of ser-
vice. A case in point is cryptographic randomness. This is
crucial for security but not testable externally. Validating
such specifications would require a different methodology
(perhaps based on formal proof of refinement rather than
testing). Our view is that it is important to state clearly and
unambiguously the external view, separately from any ad-
vice on internal implementation. This is important for testing
purposes, and also so that implementers clearly understand
what is required for correct operation of the protocol.

6.3 Test coverage issues

Sampling randomly from all legal inputs tends to produce
poor coverage of implementation behaviors. As an example,
imagine generating IP addresses completely at random. The
chance of generating the same address twice would be ex-
tremely low. Or, consider the CONNECTION_CLOSE frame
in QUIC, indicating a protocol error. If this frame were gen-
erated too frequently, it would cancel all activity, and little of
the implementation’s behavior would be observed. In prac-
tice, we found it necessary to add constraints to our test shim
designed to improve test coverage. This is done to increase
or decrease the probability of certain events occurring in test-
ing, and not to manage the tractability of constraint solving.
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For example, we limit the client to use a bounded number of
IP addresses, and to create a bounded number of streams. We
experimented with restricting the tests to certain combina-
tions of frames, and also adjusted the probability of certain
frames. For example, to stress the servers, we tried test runs
with many CONNECTION_CLOSE or RST_STREAM frames,
which would be unusual in normal interoperability testing.
In other tests, we set the probability of these frames to a
low value, to allow effective testing of other frame types.
In any test methodology it is important to adjust the test
set to obtain good coverage. A constraint-based approach
provides us with a powerful tool to do this. Standard metrics
such as code and branch coverage could be used to guide
this process.

A further test coverage issue is that the implementation
behaviors cannot be fully covered without controlling their
client APT’s and the underlying system API’s. To do this
would require a specialized test harness (instead of treating
the application as a black box). We expect that many more
errors could be found by this approach.

6.4 Performance of generation

We initially found the performance of random packet gen-
eration using an SMT solver to be far too slow for practical
testing purposes. Analysis revealed that the primary cause
of this was the encapsulation of large arrays of bytes into
frames, and the encapsulation of many frames into packets.
When compared to typical software or hardware interfaces,
protocol messages have more complex structure and typi-
cally require more data transfer to exercise functionality. We
solved this problem in two steps. First, we subdivided the
problem by creating separate actions for events at the frame
and security layers. Second, we eliminated the constraints
involving large arrays of bytes (such as the content of the
data and crypto streams) by factoring out the definitions
of certain message fields. This can be seen in Fig. 2 line 17,
where the packet payload is defined, and Fig. 3 line 5, where
the STREAM frame data field is defined. We modified the Ivy
tool so that these dependent fields are computed after solving
for other parameters (see [24] for details). This separation
also required some redundant state variables to store cer-
tain facts about the large arrays independently of the arrays
themselves. These measures allowed us to generate events
at a satisfactory rate (about 10Hz). However, they do require
the specifier to pay careful attention to the form of the speci-
fication. It may be difficult in practice to determine why test
generation is slow. A related problem is that test generation
may deadlock because a requirement is unsatisfiable. This is
also difficult to diagnose. We do not know if these methods
will scale to more complex protocols that QUIC.
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7 CONCLUSION

It is well recognized that Internet standards in the form of
RFCs are ambiguous and difficult to interpret [5]. In this
work, we tested an approach that uses light-weight formal
methods to simultaneously achieve two goals: (1) distill an
unambiguous wire specification from the knowledge implicit
in implementations of QUIC and (2) test implementations
against the wire specification in an adversarial manner.

The approach we used is compositional specification-based
testing. The compositional aspect is crucial because it allows
us to detect not only when the specification is too strong,
but also when it is too weak. We found that the approach is
effective on both fronts: it allowed us to extract knowledge
from the implementations, and also to detect a significant
number of errors in the implementations and standard.

To apply compositional testing to complex network pro-
tocols, we developed a methodology with two novel aspects:

(1) Allowing testable compositional specification of ar-
bitrary collections of processes communicating over
a network, as opposed to a fixed set of channels or
interfaces.

(2) Exploiting layering of the protocol to decompose the
test generation problem into tractable subproblems
that can be handled by modern SMT solvers.

We are currently working on extending this methodology to
address some of the difficulties we encountered, including the
specification of real-time and liveness properties (especially
related to loss detection, recovery and congestion control).

It is important to understand that our formal specification
is not simply a formal expression of the informal statements
in the RFC. The RFC primarily describes how the protocol is
to be implemented internally, while our formal specification
describes only what is visible externally. This is crucial in
order to use the specification for testing and also as a clear
and unambiguous distillation of the essence of the protocol.
The two forms of specification are complementary and both
are necessary.

As we noted, the SSL/TLS ecosystem suffered many diffi-
culties owing to the lack of compliance of implementations
in the wild to an unambiguous common protocol specifica-
tion. Our hope is that providing such a specification in a
testable form will be a step in preventing such difficulties
in QUIC. We also hope that the form of the specification is
simple enough that future developers of QUIC can use it as a
reference, though this remains to be seen. This consideration
in part motivates the form of the specification as an exe-
cutable monitor. In general, we see this work as a step in the
process of integrating formal specifications as a complement
to other approaches in Internet standardization.



Formal specification and testing of QUIC

REFERENCES

[1] Rajeev Alur, Pavol Cerny, P. Madhusudan, and Wonhong Nam. 2005.

(12

[13

—

—_

=

—

=

= =

Synthesis of interface specifications for Java classes. In Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2005, Long Beach, California, USA, January
12-14, 2005. ACM, 98-109.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. 2009. Satisfiability Modulo Theories. In Handbook of Satisfia-
bility, Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh
(Eds.). Frontiers in Artificial Intelligence and Applications, Vol. 185.
I0S Press, 825-885.

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Jean Karim Zinzindohoue. 2015. A Messy State of the
Union: Taming the Composite State Machines of TLS. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015. IEEE Computer Society, 535-552. https://doi.org/10.1109/
SP.2015.39

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, and Pierre-Yves Strub. 2013. Implementing TLS with Veri-
fied Cryptographic Security. In 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013. IEEE, 445-459.
Steve Bishop, Matthew Fairbairn, Hannes Mehnert, Michael Norrish,
Tom Ridge, Peter Sewell, Michael Smith, and Keith Wansbrough. 2018.
Engineering with Logic: Rigorous Test-Oracle Specification and Vali-
dation for TCP/IP and the Sockets APL. JACM 1, 66 (12 2018), 1-77.
Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. 1975. SELECT—-
a formal system for testing and debugging programs by symbolic
execution. In Proceedings of the International Conference on Reliable
Software. ACM, 234-245.

Josip Bozic, Lina Marsso, Radu Mateescu, and Franz Wotawa. 2018. A
Formal TLS Handshake Model in LNT. In Proceedings Third Work-
shop on Models for Formal Analysis of Real Systems and Sixth In-
ternational Workshop on Verification and Program Transformation,
MARS/VPT@ETAPS 2018, and Sixth International Workshop on Veri-
fication and Program Transformation, Thessaloniki, Greece, 20th April
2018. To be published in EPCT, 1-40.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings. USENIX Association, 209-224.
Chia Yuan Cho, Domagoj Babic, Eui Chul Richard Shin, and Dawn Song.
2010. Inference and analysis of formal models of botnet command
and control protocols. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010, Ehab Al-Shaer,
Angelos D. Keromytis, and Vitaly Shmatikov (Eds.). ACM, 426-439.
Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huff-
man, Colm MacCarthaigh, Stephen Magill, Eric Mertens, Eric Mullen,
Serdar Tasiran, Aaron Tomb, and Eddy Westbrook. 2018. Continuous
Formal Verification of Amazon s2n. In Computer Aided Verification -
30th International Conference Part II, Vol. 10982. Springer, 430-446.
Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes, and Mal-
colm Wallace. 2002. Testing and Tracing Lazy Functional Programs
Using QuickCheck and Hat. In Advanced Functional Programming, 4th
International School, AFP 2002, Oxford, UK, August 19-24, 2002, Revised
Lectures, Vol. 2638. Springer, 59-99.

The Mitre Corporation. 2014. CVE-2014-0160. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2014-0160.

The Mitre Corporation. 2014. CVE-2014-3566. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2014-3566.

[14]

[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

SIGCOMM’19, August 19-23, 2019, Beijing, China

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. 2017. A Comprehensive Symbolic Analysis of TLS
1.3. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017, Bhavani M. Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu (Eds.). ACM, 1773-1788. https://doi.org/10.
1145/3133956.3134063

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and
Formal Derivation of Programs. Commun. ACM 18, 8 (1975), 453-457.
https://doi.org/10.1145/360933.360975

Dimitra Giannakopoulou, Corina S. Pasareanu, and Colin Blundell.
2008. Assume-guarantee testing for software components. IET Software
2,6 (2008), 547-562.

Internet-Draft. 2019. QUIC: A UDP-Based Multiplexed and Se-
cure Transport (Version 18). https://tools.ietf.org/id/draft-ietf-quic-
transport-18.

Internet-Draft. 2019. QUIC: QUIC Loss Detection and Congestion
Control. https://tools.ietf.org/html/draft-ietf-quic-recovery-18.
James E. Johnson, David E. Langworthy, Leslie Lamport, and
Friedrich H. Vogt. 2007. Formal specification of a Web services protocol.
J. Log. Algebr. Program. 70, 1 (2007), 34-52.

Hyojeong Lee, Jeff Seibert, Dylan Fistrovic, Charles Edwin Killian, and
Cristina Nita-Rotaru. 2015. Gatling: Automatic Performance Attack
Discovery in Large-Scale Distributed Systems. ACM Trans. Inf. Syst.
Secur. 17, 4 (2015), 13:1-13:34. https://doi.org/10.1145/2714565
Kenneth L. McMillan. 2016. Modular specification and verification of
a cache-coherent interface. In 2016 Formal Methods in Computer-Aided
Design, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016. IEEE,
109-116.

Kenneth L. McMillan. 2019. Mechanized Specification of QUIC.
https://github.com/microsoft/ivy/tree/master/doc/examples/quic.
Kenneth L. McMillan. Last updated 2019. Ivy. http://microsoft.github.
io/ivy.

K. L. McMillan and L. D. Zuck. 2019. Compositional Testing of Net-
work Protocols. http://mcmil.net/pubs/SECDEV19.pdf. In IEEE Secure
Development Conference (SecDev 2019). To appear.

Rashmi Mudduluru, Pantazis Deligiannis, Ankush Desai, Akash Lal,
and Shaz Qadeer. 2017. Lasso detection using partial-state caching. In
2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna,
Austria, October 2-6, 2017. 84-91. https://doi.org/10.23919/FMCAD.
2017.8102245

B. Neelakantan and S. V.Raghavan. 1995. Protocol Conformance Test-
ing — A Survey. In Computer Networks, Architecture and Applications,
S. V. Raghavan et al. (Ed.). Springer, Chapter 1, 175-191.

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. 2016. Ivy: safety verification by interactive gen-
eralization. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa
Barbara, CA, USA, June 13-17, 2016. ACM, 614-630.

Javier Paris and Thomas Arts. 2009. Automatic testing of TCP/IP
implementations using QuickCheck. In Proceedings of the 8th ACM
SIGPLAN Workshop on Erlang, Edinburgh, Scotland, UK, September 5,
2009. ACM, 83-92.

Luis Pedrosa, Ari Fogel, Nupur Kothari, Ramesh Govindan, Ratul Maha-
jan, and Todd D. Millstein. 2015. Analyzing Protocol Implementations
for Interoperability. In 12th USENLX Symposium on Networked Systems
Design and Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015.
USENIX Association, 485-498. https://www.usenix.org/conference/
nsdi15/technical-sessions/presentation/pedrosa

Erik Poll, Joeri de Ruiter, and Aleksy Schubert. 2015. Protocol State
Machines and Session Languages: Specification, implementation, and
Security Flaws. In 2015 IEEE Symposium on Security and Privacy Work-
shops, SPW 2015, San Jose, CA, USA, May 21-22, 2015. IEEE, 125-133.


https://doi.org/10.1109/SP.2015.39
https://doi.org/10.1109/SP.2015.39
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/360933.360975
https://tools.ietf.org/id/draft-ietf-quic-transport-18
https://tools.ietf.org/id/draft-ietf-quic-transport-18
https://tools.ietf.org/html/draft-ietf-quic-recovery-18
https://doi.org/10.1145/2714565
http://microsoft.github.io/ivy
http://microsoft.github.io/ivy
http://mcmil.net/pubs/SECDEV19.pdf
https://doi.org/10.23919/FMCAD.2017.8102245
https://doi.org/10.23919/FMCAD.2017.8102245
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pedrosa
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pedrosa

SIGCOMM’19, August 19-23, 2019, Beijing, China

https://doi.org/10.1109/SPW.2015.32

[31] Abdullah Rasool, Greg Alpar, and Joeri de Ruiter. 2019. State machine
inference of QUIC. CoRR abs/1903.04384 (2019). arXiv:1903.04384
http://arxiv.org/abs/1903.04384

[32] Felix Rath, Daniel Schemmel, and Klaus Wehrle. 2018. Interoperability-
Guided Testing of QUIC Implementations using Symbolic Execution.
In Workshop on the Evolution, Performance, and Interoperability of QUIC
(EPIQ 2018). ACM, 15-21.

[33] Ivan Ristic. 2014. POODLE Bites TLS. https://blog.qualys.com/ssllabs/
2014/12/08/poodle-bites-tls.

[34] Jan Rith. 2018. How much of the Internet is using QUIC? https://blog.
apnic.net/2018/05/15/how-much-of-the-internet-is-using-quic/.

Kenneth L. McMillan and Lenore D. Zuck

[35] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, and Lev Nachmanson. 2008. Model-Based
Testing of Object-Oriented Reactive Systems with Spec Explorer. Lecture
Notes in Computer Science, Vol. 4949. Springer Verlag, 39-76.

[36] Gregor von Bochmann. 1989. Protocol Specification for OSI. Computer
Networks and ISDN Systems 18, 3 (1989), 167-184.

[37] QUIC working group. 2019. QUIC Working Group. https://quicwg.
org/.

[38] Pamela Zave. 2015. How to Make Chord Correct (Using a Stable Base).
CoRR abs/1502.06461 (2015). http://arxiv.org/abs/1502.06461


https://doi.org/10.1109/SPW.2015.32
http://arxiv.org/abs/1903.04384
http://arxiv.org/abs/1903.04384
https://blog.qualys.com/ssllabs/2014/12/08/poodle-bites-tls
https://blog.qualys.com/ssllabs/2014/12/08/poodle-bites-tls
https://blog.apnic.net/2018/05/15/how-much-of-the-internet-is-using-quic/
https://blog.apnic.net/2018/05/15/how-much-of-the-internet-is-using-quic/
https://quicwg.org/
https://quicwg.org/
http://arxiv.org/abs/1502.06461

	Abstract
	1 Introduction
	1.1 Related work

	2 An introduction to QUIC
	3 Specification methodology
	4 QUIC protocol specification
	4.1 Extensional and Intentional Specs
	4.2 The packet protocol
	4.3 The frame protocol
	4.4 Security and application layers
	4.5 The test shim

	5 Results
	6 Experiences
	6.1 Completeness of the specification
	6.2 Extensional specification
	6.3 Test coverage issues
	6.4 Performance of generation

	7 Conclusion
	References

