
Compositional Testing of Internet Protocols
Kenneth L. McMillan

Microsoft Research, Redmond
Email: kenmcmil@microsoft.com

Lenore D. Zuck
Department of Computer Science, UIC

Email: lenore@cs.uic.edu

Abstract—We introduce a methodology of Network-centric
Compositional Testing (NCT) to develop formal wire specifications
of Internet protocols and to test protocol implementations for
compliance to a common standard. We use formal specifications
to generate automated testers for implementations of the pro-
tocol, based on randomized constraint solving using an SMT
solver. This makes it possible to resolve ambiguities in informal
standards documents using knowledge inherent in the implemen-
tations, while at the same time testing the implementations for
compliance to the developing formal specification. Because the
testing is compositional, it allows us to detect cases when the
specification is either too weak or too strong, and to refine
the specification accordingly. We apply the methodology to
QUIC, a new Internet secure transport protocol currently in the
process of IETF standardization and intended as a replacement
for the TLS/TCP stack and a foundation for HTTP/3. In the
process of specifying QUIC, we discovered numerous errors in
implementations, as well as issues in the standard itself. These
include an off-path denial of service attack and an information
leak similar to the “heartbleed” vulnerability in OpenSSL. The
paper describes the formal foundations of the methodology, and
summarizes its specific application to QUIC.

Index Terms—Specification based conformance testing, Net-
work Protocols, Light-weight Formal Methods, QUIC

I. INTRODUCTION

Internet protocols are developed in the form of RFCs:
English-language documentation that provides extensive guid-
ance for implementers of the protocol, but is nonetheless
ambiguous and broadly open to interpretation. The primary
mechanism for resolving these ambiguities and validating the
correctness of the protocol design is to produce multiple inde-
pendent implementations, and to test these implementations for
interoperability. As a result, these implementations represent
a kind of commentary on the standard document, providing
concrete interpretations where the language may be vague,
unclear or contradictory.

While effective, this methodology leaves something to be
desired from the point of view both of clear standardization
and of implementation compliance. First, the knowledge im-
plicit in the implementations is not captured in any precise
and rigorous way. Second, since the implementations do not
represent the full diversity of behaviors that the protocol
allows, interoperability testing provides very limited test cov-
erage of protocol behaviors. Third, because actual protocol
compliance is never tested, interoperability is not sufficient to
guarantee that current implementations will be interoperable

The work of the L. D. Zuck was partially supported by NSF awards CCF-
1564296 and CCF-1918429

with future implementations meeting the standard. The result is
that implementations in the wild become the de facto standard.
This effect has important security consequences, as illustrated
by the history of SSL/TLS. Non-compliant implementations of
this protocol in the wild led to numerous vulnerabilities, due
for example to vulnerable work-arounds in clients [1]–[3].

In this paper, we argue that it is important to develop an un-
ambiguous formal statement of a protocol standard, in a form
that allows implementations to be effectively tested for actual
compliance to the standard, and not just for interoperability.
Moreover, it is necessary to test implementations in adversar-
ial environments and not just in the benign environment of
other existing implementations.

We introduce a methodology we call Network-centric Com-
positional Testing (NCT) to serve this purpose. In NCT, formal
specifications are used to generate automated testers for im-
plementations of the protocol, based on randomized constraint
solving using an SMT solver. Randomized generation is highly
effective in producing adverse stimulus, that is, behaviors in
which messages occur outside of the expected order, or with
unusual combinations of parameter values. This makes it pos-
sible to resolve ambiguities in informal standards documents
using knowledge inherent in the implementations, while at
the same time testing the implementations adversarially for
compliance to the developing formal specification.

By ‘network-centric’, we mean that the specification de-
scribes the protocol in terms of its behaviors as observed
on the wire and not as an abstract implementation of the
protocol. This allows us to test the protocol compositionally.
That is, any assumptions made on the input of one process
in the protocol are treated as guarantees on the output of
other process. Without compositionality, we cannot infer from
the fact that implementations pass all tests that they will
interoperate correctly when composed. Moreover, while mon-
itoring protocol traces using a formal specification allows us
to discover cases where the specification is too strong (i.e., it
rejects a legal protocol behavior) compositional testing can
reveal cases where the specification is too weak. That is,
suppose the specification of an output of a protocol node is
too weak. This same specification is used to generate inputs
for its peer. Thus, we can detect the weakness by the fact that
the peer misbehaves or flags a protocol error on a generated
input.

NCT addresses two primary challenges in network protocol
specification. First, its compositional rule (Sec. II) is applicable
to testing protocols on the Internet. Notably, it supports

protocols with an arbitrary number of participants, in an
environment in which there are no pre-established channels or
process identities. Second, we introduce optimized algorithms
for randomized constraint solving, and corresponding specifi-
cation strategies, that are suitable for generating test traffic
with complex message structures and large data transfers
(Sec. III,IV). The methodology can thus be applied to protocol
implementations that are not cleanly layered, and require us
to test the complete protocol stack, with its attendant deeply
nested encapsulation of messages.

To evaluate NCT, we applied it (Sec. VI) to QUIC, a new
Internet secure transport protocol introduced by Google as
a replacement for the TLS/TCP stack, and currently in the
process of IETF standardization. Because QUIC has been
selected as the foundation for HTTP/3, the next official version
of the hypertext transfer protocol, it is reasonable to expect
that the protocol will soon carry a significant portion of
Internet traffic. In the process of developing a network-centric
specification for QUIC, the adverse stimulus produced by
randomized testing revealed numerous errors in the current
implementations, as well as issues in the standard itself,
that were not discovered by directed tests or interoperability
testing. These include an off-path denial of service attack and
an information leak similar to the “heartbleed” vulnerability
in OpenSSL. By exposing previously unseen implementation
behaviors, we discovered vulnerabilities, even though we did
not explicitly search for them. For this reason, we think the
methodology may also be valuable to security teams explicitly
searching for vulnerabilities.

Related work. There are numerous approaches to verification
or adversarial testing of network protocol implementations.
Many of these do not check compliance to a common formal
protocol standard (e.g., [4]–[7]).1 This includes some interest-
ing recent work applying white-box testing to QUIC [8]. Tech-
niques that do address formalization and compliance include
model-based testing (MBT) [9]–[11] and its precursors in the
area of protocol conformance testing [12]. These methods
assume that specifications are finite-state machines (FSMs)
or can be effectively restricted to be finite-state. They use
systematic exploration of the FSM as a heuristic for adver-
sarial test generation. NCT differs from these methods in two
primary respects. First, it is compositional, with the benefits
we noted above. Second, it does not assume the specification
is an FSM. This is crucial for protocols such as QUIC that
are inherently not finite-state, and allows us to capture all
aspects of the protocol needed for full interoperation with real
implementations. This is in contrast to, e.g., [2], [10], [11],
which capture only certain finite-state aspects of a protocol.

Another effort that infers protocol specifications experi-
mentally from implementations is the Network Semantics
Project [13] which has developed a formal specification of
TCP. In this work, the formal specification is used to monitor

1Note that [6] formally proves security properties of a reference implemen-
tation, but does not prove compliance to a common standard.

traces captured on the wire. It is not used for test generation
and is not compositional.

II. COMPOSITIONAL TESTING FOR INTERNET PROTOCOLS

In compositional reasoning, we have a system that consists
of a collection of processes communicating in some way. Each
process has a local specification that determines its allowed
input/output behavior. This is also called the guarantee of the
process. In addition, each process is allowed to make assump-
tions about its environment (that is, the other processes in the
system). As observed originally by Chandy and Misra [14],
because the processes are interconnected, the assumptions of
one process are the guarantees of the other processes. To avoid
making a circular argument, we have to define carefully the
assumptions that a process may make about its environment.
For example, we say that the correctness of a given output
produced by a process may depend on the the correctness of
inputs received in the past, but not those that will be received
in the future.

A typical rule for compositional reasoning (as used in [15])
looks like this:

〈φ2〉 π1 〈φ1〉
〈φ1〉 π2 〈φ2〉

〈true〉 π1 ‖ π2 〈φ1 ∧ φ2〉
(1)

Here the triple 〈φ〉π〈ψ〉 means that, if the environment of
process π satisfied the assumption φ always in the past, process
π guarantees property ψ at the present moment. The premises
of the rule state that each process maintains its guarantee
so long as the other does (in fact, one step longer). From
these premises, we can conclude that neither guarantee is ever
violated when we compose the two processes together, since
neither guarantee can be the first to be false.

In a compositional testing approach [16], [17], rather than
formally verify the premises of Rule 1, we simply test the
actual artifacts π1 and π2. For each process, we generate inputs
satisfying its assumption, and we check that the resulting
behavior satisfies the guarantee. Rule 1 provides a formal
proof, but the premises of this proof are tested empirically.

For testing Internet protocols, however, the rule above is
significantly inconvenient. The main reason is that Internet
protocols involve an arbitrary number of processes distributed
across a network. For example, a server may connect to an
arbitrary number of clients, or a peer-to-peer protocol may
connect an arbitrary number of peers. When we generalize
Rule 1 to an unbounded collection of processes, we find that
each process now makes an unbounded number of assumptions
(that is, it assumes that all other processes in the network
follow their local specifications). For purposes of formal proof,
this may not be problematic. However, if we wish to generate
test inputs that satisfy this infinite collection of properties, we
have a problem.

Our approach to this problem is to replace the infinite collec-
tion of local specifications with a single global specification φ
that fully describes the protocol. That is, φ determines, for any
global trace of protocol messages, whether the protocol has

been followed. Of course, no one local process can guarantee
this global property. Rather, we define what it means for a
single process πi to cause the failure of the global property.
This occurs when a single output produced by πi changes the
status of the property from true to false. We interpret the triple
〈φ〉 πi 〈φ〉 to mean that πi does not cause the specification
φ to be falsified. If all the local processes have this property,
then the specification must hold. Our local testing problem is
now to generate inputs for πi that do not cause φ to fail, and
to check that the resulting outputs of πi do not cause φ to fail.
In the sequel, we will formalize these notions.

A more subtle reason to use a global specification is that a
global specification can be monitored on the network. Local
specifications, as in Rule 1, assume that the communications
of each process can be identified. On the Internet, however,
we cannot reliably identify the source of messages. In fact,
the purpose of many protocols is precisely to establish the
identity of communicating parties. In particular, we cannot
assume a one-to-one correspondence between processes and
network addresses since a process may use many addresses,
and these may change over time (i.e., the process may be
mobile). Moreover, the same address may be used by many
processes at different times, or even at the same time in the
case of malicious processes that ‘spoof’ addresses. A network
address thus provides a heuristic for ‘best effort’ delivery of a
message to an intended recipient, but the network provides
no guarantees regarding the parties that ultimately observe
a message. For this reason, it is useful to write a protocol
specification as a global property that does not refer to the
source of messages, but only describes the messages that may
be sent by any process at a given time. We will refer to such
specifications as process-oblivious.

There are two other important testing-related issues that
determine the form of our compositional reasoning system.
For purposes of assume/guarantee testing, we must effectively
be able to use our specifications as both generators of inputs
and checkers of outputs of processes. This motivates the use
of a deterministic guarded command formalism for property
specification instead of, for example, a temporal logic or non-
deterministic labeled transition systems. Moreover, rather than
decompose the system into a collection of disjoint processes,
we decompose it into a collection of overlapping subsets of
processes called locales. As we will see, this allows us to
generate tests in cases where some system components lack
formal specifications but do have concrete implementations.
All of these aspects distinguish our system from prior compo-
sitional systems such as [14], [16], [18], [19].

Example 1. As a running example, we will use a toy protocol
among an arbitrary number of clients and servers. A client,
say Alice, sends a request message to a server, say Bob, that
contains a fresh nonce value N that acts as a connection
identifier, and a data value D. The server simply echoes this
information in a response message. Our specification requires
that request messages be consistent, in the sense that no two
requests with the same connection identifier have different data

values, and responses match previous requests. �

A. Processes

In our model, processes communicate values via channels.
Each channel is an output of exactly one process, but it
may be an input of many processes. Communication over
channels is synchronous, so that a value is received at the
same instant in which it is transmitted. To model asynchronous
communication over a network, we will use an explicit process
to model the network.

Let C be a (possibly infinite) set of channels. We model the
content of a message on a channel c ∈ C by a valuation of a
set of parameters Vc. Each parameter v ∈ Vc has an associated
range Rv . A value of channel c maps every parameter v ∈ Vc
to an element of Rv . We denote the set of such mappings by
Rc.

An event is a pair (c, V), where c ∈ C and V ∈ Rc. An
event corresponds to transmission of a value on a channel. A
trace over a set of channels C ⊆ C is a finite sequence of
events (c1, V1), . . . , (ck, Vk) where ci ∈ C for 1 ≤ i ≤ k.
A trace represents an I/O behavior of a process. We write
Traces(C) for the set of traces over C. We will call a trace
over the full set of channels C simply a trace.

A process is a triple (I,O, T), where I ⊆ C is the input
set, O ⊆ C is the output set and T is a prefix-closed set of
(I∪O)-traces. (A set of sequences is prefix closed if for every
sequence in the set, all its prefixes are also in the set.)

Example 2. Each process π in our model of the toy protocol
has a single input channel RCVπ and a single output channel
SNDπ . All channels have three parameters: a message type M
ranging over the set {REQ, RSP}, a connection identifier N and
a data value D (where N and D are, say, natural numbers).
As a shorthand, we write a send event as SNDπ(M,N,D) and
a receive event as RCVπ(M,N,D). Some example traces of a
client process A are:

SNDA(REQ, 42, 0), RCVA(RSP, 42, 0), SNDA(REQ, 43, 1), RCVA(RSP, 43, 1)
RCVA(REQ, 42, 0), RCVA(RSP, 43, 1), SNDA(REQ, 44, 2)

The first trace shows the normal client sequence, in which a
request is followed by a corresponding response, then another
request/response cycle begins. The second trace shows that
the client may receive unexpected messages, which it ignores.
Some example traces of a server B are:

RCVB(REQ, 42, 0), RCVB(REQ, 43, 1), SNDB(RSP, 43, 1), SNDB(RSP, 42, 0)
RCVA(REQ, 42, 0), RCVB(RSP, 42, 1), SNDB(REQ, 42, 1)

Again, the first is a normal sequence. In the second, the server
receives two conflicting requests. Finally, consider a process
Net representing the network. The inputs of Net are the send
channels SNDπ , while the outputs are the receive channels RCVπ .
Some example traces of Net are:

SNDB(REQ, 42, 0), RCVB(REQ, 42, 0), RCVA(RSP, 43, 1)
SNDB(REQ, 42, 0), SNDB(REQ, 42, 0), SNDB(REQ, 42, 0)

The network provides no guarantees about delivery, except that
it will not invent messages. �

The projection of a trace t onto a set of channels C ⊆ C,
denoted t ↓ C is the subsequence of t consisting of all events
(c, V) such that c ∈ C.

Suppose that, for i = 1, 2, πi = (Ii, Oi, Ti). The processes
π1 and π2 are composable if O1∩O2 = ∅. If the two processes
are composable, then their composition, written π1 ‖ π2, is
defined by the process (I,O, T) where:
• I = (I1 ∪ I2) \ (O1 ∪O2)
• O = (O1 ∪O2)
• T = {t ∈ Traces(I∪O) | t ↓ (Ii∪Oi) ∈ Ti for i = 1, 2}

Example 3. Consider the composition A ‖ Net ‖ B, where A
is a client and B is a server. The input set of this composition
is empty, while its output set is {SNDA, RCVA, SNDB , RCVB}. An
example of a trace of the composition is:

SNDA(REQ, 42, 0), RCVB(REQ, 42, 0), SNDB(RSP, 42, 0), RCVB(RSP, 42, 0)

Notice that the projection of this trace onto the alphabet
of each of the three processes is trace of that process. For
example, the projection onto A is:

SNDA(REQ, 42, 0), RCVA(REQ, 42, 0)

which is a trace client, while the projection onto B is:

RCVB(REQ, 42, 0), SNDB(RSP, 42, 0)

which is a server trace. Moreover, the entire trace is a trace
of Net, since every received message was previously sent. �

The ‖ operator is commutative/associative. We generalize
the notion of composition to sets of processes. Let Π be an
indexed family of processes πi = (Ii, Oi, Ti), where i ranges
over a (possibly infinite) set, such that the processes in Π are
pair-wise composable. The parallel composition ‖ Π is the
process (I,O, T) where I = (∪iIi) \ (∪iOi), O = ∪iOi, and
T is the set of traces t in Traces(I ∪ O) such that for every
i, the projection of t onto Ii ∪Oi is a Ti-trace.

B. Specifications

We express a safety property in the form of a machine that
accepts a language of finite traces of events. This machine is
represented using a parameterized form of guarded commands
called actions. An action has a guard that determines whether
a given event is allowed in a given state, and an update that
modifies the state deterministically as a function of the event.
A set of actions, combined with an initial state, accepts a
prefix-closed language of finite sequences of events.

The state of a safety specification is represented by a
collection of function and relation symbols. A state is thus
a first-order structure, giving a valuation of these symbols.
The values of the function and relation symbols capture
information about the history of events. The guard is a first-
order logic formula over the event parameters and the state
symbols. It determines when an event is enabled in a given
state. This will allow us to generate events that satisfy the
guards using an SMT solver.

Let Σ be a signature of sorted first-order symbols. A state
is a Σ-structure, that is, a valuation of the state symbols. We

will write structs(Σ) for the set of all Σ-structures. We also
assume a special constant symbol p̂ 6∈ Σ of a sort that ranges
over channels.

A Σ-action is a tuple α = (Λ,Σa, γ, τ), where:
1) Λ ⊆ C is a set of channels,
2) the parameter signature Σa such that Σa = Vc for all

c ∈ Λ,
3) the guard γ is a first-order formula over Σ ∪Σa ∪ {p̂},
4) the update τ is a function from structs(Σ ∪ Σa ∪ {p̂})

to structs(Σ).
Notice that (2) implies that all of the channels associated to
an action must have the same parameter set. Given a Σ-action
α = (Λ,Σa, γ, τ), an α-event is an event (c, V) where c ∈ Λ
and V is a Σa-structure. An α-event e = (c, V) is enabled in
a state s if 〈s, V, p̂ 7→ c〉 |= γ. Here we use 〈s, V 〉 to denote
the structure s augmented by an assignment V .

Given an α-action as above, an α-transition is a triple
(s, e, s′), where s and s′ are states, e = (c, V) is an α-event
enabled in s, and τ〈s, V, p̂ 7→ c〉 = s′.

A specification is a triple (Σ, s0,A) where Σ is a first-order
state signature, the initial state s0 is a Σ-structure and A is a
set of Σ-actions such that the channel sets of distinct actions
are disjoint.

Example 4. In the specification of our toy protocol, the state
signature Σ consists of a ternary relation S that records the set
of messages (M,N,D) that have been sent on the network. In
the initial state, the relation is empty. We will write an action
(Λ,Σa, γ, τ) in the form Λ(Σa) : γ → τ , where τ is expressed
as a sequence of assignments that update the state symbols.
The actions of our toy specification are:

SND(M,N,D): (∀x.(S(M,N, x)⇒ x = D))
∧ (M = RSP ⇒ S(REQ, N,D))

→ {S(M,N,D) := true}
RCV(M,N,D): S(M,N,D) → {}

The guard for send events says two things about sent messages.
First, the values must be data-consistent, that is, if a sent mes-
sage shares a type and connection id with previous message,
it must also have the same data. The second is that a response
message must match a previously sent request. Upon a send
event, the relation S is updated to indicate that the message
was sent. We require of the network that receive events must
match prior send events, but nothing else (i.e., messages may
be duplicated or reordered). �

Let φ be a safety specification (Σ, s0,A). A transition of φ
is an α-transition of any action α ∈ A. A run of φ is a finite
sequence of transitions t0, t1, . . . where each ti = (si, ei, si+1)
and s0 is the initial state. A trace of φ is the sequence of events
e0, e1, . . . corresponding to some run t0, t1, . . . If t is a trace
of φ, we write t |= φ. If π = (I,O, T) is a process, we write
π |= φ to indicate that for all t ∈ T , t |= φ.

Note that, since the update function of a specification is
deterministic, we can easily check whether t |= φ. That is, a
trace defines a unique run, and we have only to verify that the
guards along this run are satisfied. Without determinism, we

might have to consider an infinite collection of possible runs to
determine that t 6|= φ. Because we need to use φ operationally
as a checker, we require that it be deterministic. This does
not mean, however, that the processes in our system must be
input-output deterministic.

Using deterministic acceptors as specifications has other
advantages. Given two safety specifications φ and φ′, we can
use standard automata-theoretic constructions to build safety
specifications corresponding to φ ∧ φ′ and φ⇒ φ′.

C. Compositional Proofs

We now introduce our notion of assume/guarantee speci-
fication. Intuitively, we intend the specification 〈ψ〉 π 〈φ〉 to
mean that, if process π violates property φ, then property ψ
must have been violated in the past. That is, a π must maintain
the guarantee φ so long as the environment maintains the
assumption ψ. However, because our specifications are global,
applying to all events in the system, we must be careful about
what we mean by “π violates φ”. We intend this to mean that
the cause of the failure of φ is an output of π.

Let π = (I,O, T) be a process. We say that trace t is π-
terminal if t ends in an event (c, V) such that c ∈ O.

Definition 1: Let φ and ψ be specifications and π =
(I,O, T) a process. We say that 〈φ〉 π 〈ψ〉 holds when, for
every π-terminal trace t such that t ↓ (I ∪O) ∈ T and t 6|= ψ,
there exists a strict prefix t′ of t such that t′ 6|= φ ∧ ψ.

Notice that the triple 〈φ〉 π 〈φ〉 means essentially that π is
not the cause of the failure of φ. That is, π is not the first
process whose output causes φ to be false. We say a process
is closed if its input set is empty. In a closed system, if no
process is the cause of the failure of φ, then φ always holds.
We can express this idea with the following inference rule:

Theorem 1: The following inference rule is sound, provided
π1 ‖ π2 is closed:

〈φ〉 π1 〈φ〉
〈φ〉 π2 〈φ〉
π1 ‖ π2 |= φ

(2)

Proof. Assume a trace t of π1 ‖ π2 that violates φ, and is a
shortest such trace. Since π1 ‖ π2 is closed, t must be either
π1- or π2-terminal. Without loss of generality, assume it is
π1-terminal. By assumption, every strict prefix of t satisfies
φ. This contradicts 〈φ〉 π1 〈φ〉. �

This idea of assigning the cause of a property failure to a
process can be extended to subsets of processes. A localization
L of a set of processes Π is a set of subsets Li ⊆ Π such that
∪iLi = Π (that is, it is a union-decomposition of Π). The
sets Li are called locales. In a closed system, every event is
the output of at least one locale. Thus, if no locale causes a
property φ to fail, then φ must always hold. We can formalize
this idea with the following proof rule:

Theorem 2: Given a composable set of processes Π, such
that ‖ Π is closed, and a localization L of Π, the following
inference rule is sound:

for all ` ∈ L: 〈φ〉 ‖ ` 〈φ〉
‖ Π |= φ

(3)

Proof Let t be trace of ‖ Π that violates φ and is a shortest
such trace. Every strict prefix of t satisfies φ. Since every
process is in at least one locale, it follows that there is some
locale ` ∈ L such that t is ‖ `-terminal. This contradicts 〈φ〉 ‖
` 〈φ〉. �

Example 5. Locales are useful in compositional testing if we
have some component of a system for which a strong enough
specification cannot be obtained. This is a very common
situation, for example, when using third-party libraries. As
an example, suppose we have a system of three processes
A,B,C with corresponding output channels OA, OB , OC . In
our specification φ, the guard for OC events is too weak
(perhaps it is just true) to act as an assumption for processes
A and B. We can still verify this system compositionally by
reasoning as follows:

〈φ〉 A ‖ C 〈φ〉
〈φ〉 B ‖ C 〈φ〉
A ‖ B ‖ C |= φ

That is, we include the unspecified process C in both locales.
This allows A and B to rely on unspecified properties of C.
In this proof, we say C is “self-specified”. �

D. Mirrors

In order to test whether the triple 〈φ〉 π 〈φ〉 holds, we
will construct a process called a mirror. We can think of this
process as the most general environment of π that does not
cause φ to fail. The mirror is a process whose outputs are the
complement of the outputs of π. Outputs of the mirror must
follow the specification φ. However, if process π causes φ to
fail, the mirror may thereafter produce any output, since the
blame for the failure falls to π. We can think of the mirror
as a test generator for π: it can produce any input for π that
satisfies the input assumptions of π.

Let π = (I,O, T) be a process, and φ a specification. A
π-failure of φ is any trace t such that t 6|= φ and the shortest
prefix t′ of t such that t′ 6|= φ is π-terminal. Denote the set of
π-failures of φ by Failures(π, φ). The φ-mirror of π, denoted
Mπ
φ is a process (I ′, O′, T ′) where:
• I ′ = O,
• O′ = C \O,
• T ′ = Failures(π, φ) ∪ {t | t |= φ}.
The following theorem shows how we can use a mirror

process to test a triple 〈φ〉 π 〈φ〉:
Theorem 3: Let φ be a specification and π a process. Then
〈φ〉 π 〈φ〉 holds iff Mπ

φ ‖ π |= φ.
Proof Forward implication. Suppose toward a contradiction
that t is a trace of Mπ

φ ‖ π and t 6|= φ. Trace t must be a
π-failure of φ (by the definition of mirror). Moreover, its pro-
jection onto the inputs and outputs of π is a trace of π (by the
definition of composition). Trace t thus contradicts 〈φ〉 π 〈φ〉.
Reverse implication. Suppose toward a contradiction that there
is a shortest π-terminal trace t of such that t 6|= φ and whose
projection onto the inputs and outputs of π is a trace of π.
This contradicts Mπ

φ ‖ π |= φ. �

Because of the guarded command form of safety speci-
fication φ, the mirror process is not difficult to construct.
The mirror process keeps track of the specification state. At
each input or output event, it updates the state according
to the update function τ . To produce an output event, it
non-deterministically chooses an event on an output channel
satisfying the guard γ. However, if an input fails to satisfy
the appropriate guard, it goes to a special state from which all
output events may be generated.

Theorem 3 gives us a way to test compositionally that
a protocol implementation satisfies its specification φ. We
decompose the system into locales. For each local `, we need
to verify the corresponding premise of Theorem 2. That is,
letting π =‖ `, we must verify 〈φ〉 π 〈φ〉. To do this using
Theorem 3, we construct the mirror process Mπ

` . We compose
it with π to to obtain Mπ

` ‖ π. We will call this process the
test process. We then enumerate the traces of the test process
and check that each satisfies φ. If this is true for all locales,
we know that the system as a whole satisfies its specification.
Of course, since the set of traces is in general infinite, this is
not practical. Instead, we settle for checking a finite sample
of the traces. The next section deals with how to generate this
sample.

Example 6. Consider testing an implementation of our
toy protocol. We start with server process B. The φ-mirror
for B generates outputs that satisfy φ, so in particular these
messages are always data-consistent. Since B simply echoes
requests with responses, its outputs are also data-consistent,
and moreover they always match previous requests. Thus, we
can verify 〈φ〉 B 〈φ〉. Consider client A. The client must
guarantee data consistency of its outputs, but unfortunately
this is impossible, since A cannot see all the requests of
other processes. The test process generates, for example, the
following trace that violates φ:

SNDE(REQ, 42, 0), SNDA(REQ, 42, 0)

In fact, our system does not satisfy its specification. The
problem is that there are failures, such as the above, that cannot
be blamed on any single process. In Subsec. V-B, we will see
a solution to this problem.

III. RANDOMIZED TESTING

To sample the behaviors of the test process, we need to
resolve the non-deterministic choices of this process in some
way. There are several sources of non-determinism in the test
process. First, the mirror has a choice among all output events
satisfying the their action guard. We will call this specification
choice. Second, if both the mirror and the process π under
test are enabled to produce outputs, there is a choice of which
process will execute next. We will call this interleaving choice.
Third, process π may itself have internal non-deterministic
choice.

There are many possible approaches to resolving the non-
determinism. For example, we might try to systematically
explore some finite subsets of the test process’ behavior as

in [20] or use white-box methods to improve coverage as
in [5]. Our approach, however, is to use simple Monte Carlo
sampling. In other words, we will replace non-deterministic
choices with probabilistic choices. As we will see later,
this may be as effective as more systematic approaches for
complex Internet protocols.

For specification choice, we assume that a user supplies
a target probability distribution over events. We have a dis-
tribution pC over channels, and for each channel c ∈ C, a
distribution pc over the parameter space Rc that gives the
probability of a parameter valuation when the event label is c.
Thus, the probability of an event (c, V) is pC(c) ·pc(V). Since
the space of parameter valuations is not finite, there is no
general notion of a uniform distribution. If a parameter ranges
over the natural numbers, for example, we may choose an
exponential distribution.

Suppose the mirror process is in a state defined by the
Σ-structure M. We can construct a characteristic set of
constraints χM whose unique model, up to first-order dis-
tinguishability, is M. This is a reasonable assumption, since
the reachable state structures are finite (though the state space
is not).

The sampling problem is this: Given a Σ-action α =
(Λ,Σa, γ, τ) and a Σ-structure M, draw randomly from the
set of Σa-structures an assignment (valuation) V such that
〈M, V 〉 |= γ. This is equivalent to drawing randomly from
the models of χM∧γ, projected onto Σa. We define the ideal
distribution over the models of χ as pχ(φ) = pc(φ|χ). Thus,
the probability of any parameter valuation V given a channel
c is pc(V)/pc(χ) if V |= χ and zero otherwise.

A simple approach to draw from the ideal distribution would
be to choose V randomly according to pc, and then to reject
any sample that does not satisfy χ (this is called rejection
sampling). For typical protocol specifications, however, the
rate of accepted samples may be negligible.

Unfortunately, in practice it is difficult to do better than re-
jection sampling if one wants to achieve a precise distribution.
There exist precise methods to sample uniformly from clausal
Boolean formulas, but they are costly [21]. MCMC methods
are also used [22] but they require a large number of samples
to converge to the desired distribution. This is not practical
in our application, since the distribution is conditional on the
specification state, which does not repeat. Thus, the cost of
MCMC sampling cannot be amortized over a long sequence
of samples.

Given that the choice of the ideal distribution is heuristic at
best, and given the importance of achieving a high sampling
rate in testing, it is more practical to think of the ideal
distribution as a guide rather than a requirement. Here, we
propose a simple and practical approach that uses the ideal
distribution as a guide, applying an SMT solver. The method
does not provide an approximation bound because we wish
to trade off speed of sampling (and therefore of testing) for
accuracy of the distribution. This point bears repeating: it does
not make sense to expend exponential computational resources
to closely approximate an arbitrary distribution, as this will

ultimately lower rather than increase the test coverage. For
this reason, although the problem of conditional sampling
with a precise distribution is well studied, we chose to take a
heuristic approach. Having said this, while we show here that
that our approximate approach is effective in practice, we do
not explore the trade-off of distribution accuracy vs speed as
it effects bug finding ability and leave this question for future
research.

Sampling with SMT. While there is some degree of
randomness in models produced by an SMT solver, this
randomness is insufficient to produce an adequate diversity of
test inputs, hence we do not rely on randomness in the SMT
solver itself. Instead, to generate a sample, we first draw a
parameter valuation from pc. If the sample does not satisfy χ,
instead of rejecting it, we apply an SMT solver that produces
UNSAT cores to find a nearby sample that does satisfy χ. The
algorithm for this is shown in fig. 1. We define a function
SOLVERANDOM that given a constraint set χ and a vocabu-
lary Σ, returns a satisfying assignment over Σ drawn roughly
according to the ideal distribution pχ. We start by drawing a
sample from the base distribution pc at line 3. This model
is then translated into a characteristic set of constraints C
using a function StructureToConstraints. We prefer to have
fine-grained constraints. For example, if a symbol a represents
an array of length n whose value in the model is a, then we
produce a corresponding set of characteristic constraints of
the form select(a, i) = a[i] for i = 0 . . . n − 1. At line 5 we
ask the SMT solver whether χ is consistent with the model
constraints. If not, our sample did not satisfy χ. We consult an
unsatisfiable core returned by function UnsatCore. This gives
a heuristically small subset U of C that is inconsistent with
χ. If U is empty, χ must be unsatisfiable, so we give up and
return a special value ⊥. Otherwise, we randomly choose one
constraint from the UNSAT core to remove from C and repeat.
When χ∧C is satisfiable, we return the projection (↓) of the
satisfying assignment onto Σ as our sample.

1 function SOLVERANDOM(χ,Σ)
2 //draw a model of χ over signature Σ, approximately distributed by pχ
3 choose M∈ structs(Σ) randomly, from distribution p
4 C ← StructureToConstraints(M)
5 while χ ∧ C is unsatisfiable:
6 U ← UnsatCore(χ,C)
7 if U = ∅ return ⊥
8 choose u ∈ U uniformly at random
9 C ← C \ {u}

10 choose M′ s.t. M′ |= χ ∧ C
11 return M′ ↓ Σ

Fig. 1. SOLVERANDOM: Randomize constraint solving with SMT and
UNSAT core

In practice, this procedure produces a distribution of events
that is far from ideal. It is fast, however, and we found it
to generate a diversity of tests sufficient to uncover many
protocol implementation errors that were not discovered by
other means.

Finally, recall that there are two other sources of non-

determinism in the test process: interleaving choice and inter-
nal choice of process π. For the former, we select which of the
two processes to execute (π or its mirror) according to a fixed
distribution. If the chosen process is not enabled to produce an
output, we reject the sample and try again. In this scenario it is
generally not possible to determine whether the process under
test will eventually produce output. A pragmatic approach
(also used in [9]) is simply to wait for a pre-determined time
and if no output occurs, assume no output is enabled. For
internal choice of π (for example, thread scheduling choice)
we assume this is not under control of the tester and let the
underlying system resolve the choices.

Randomized compositional testing has a key property that
we will call soundness. That is, if the system violates the
specification, then for some locale there is a local test that
reveals the failure (by Theorems 2 and 3). Since the failing
traces are finite, if the sampling distribution is everywhere non-
zero, there is a finite probably of producing the failure. Thus in
an infinite sequence of trials, we will eventually see the failure
with probability one. We do not, of course, test infinitely.
Nonetheless the fact that we do not rule out any failures is
important heuristically, since it means that all failures are
exposed to an adversarial test environment. Non-compositional
approaches, such as MBT, do not have this property.

IV. DEPENDENT FIELD EXTRACTION

Modern SMT solvers are powerful tools. Unfortunately,
they are not powerful enough to generate messages in a
complex protocol such as QUIC at a speed sufficient for testing
purposes. For example, we found that generating even a single,
relatively simple, packet in the QUIC protocol required several
minutes. This is because protocol states are large structures.
If we feed all of the constraints in the characteristic formula
of such a large structure into the SMT solver, the solver will
choke. To avoid this problem, we need to write our guards in
such a way that there are just a few essential random choices to
be made, from which the remaining parameters can be derived
deterministically. The random choices must depend on only a
small part of the protocol state to avoid flooding the solver
with too much data.

As an example, imagine that our protocol has messages
called frames. Each frame has three fields: a beginning marker
bgn, an ending marker end, and a payload array pyld that holds
the segment of a long stream of bytes data that falls between
these markers. We might write the guard of the frame action
like this:

bgn < end ∧ end < len(data) ∧ len(pyld) = end− bgn
∧ ∀i. i < len(pyld)⇒ pyld[i] = data[i]

Suppose that data is part of the protocol state. Once we choose
bgn and end, the value of pyld is determined. Moreover, the
possible values of bgn and end depend only on the length
of data. We could exploit these facts to optimize the solving
process if they were more apparent in the form of the guard.
Suppose we rewrite the guard like this:

bgn < end ∧ end < len(data)∧
∧ pyld = segment(data, bgn, end)

Here, segment is a function interpreted in the solver’s theory
that returns a segment of an array. Now it is clear that we
can use our SMT solver to solve the first two conjuncts, while
ignoring the content of data. Then we can satisfy the last
conjunct by simply computing pyld directly without using a
solver.

In the remainder of this section, we present an algorithm that
uses this idea to efficiently solve constraints in the appropriate
form. We call we this approach dependent field extraction.

A. Modular constraint solving

The algorithm for constraint solving using dependent field
extraction is shown in fig. 2. It takes as arguments a struc-
ture M (a state of the specification), a set Σa of symbols to
solve for (parameters of an action) and a set of constraints C
(the guard of an action) and returns an interpretation Ma of
Σa such that 〈M,Ma〉 |= C.

Informally, we say a term is mutable if we can modify its
value without changing the truth value of formulae not refer-
ring to it. An example of a mutable term is an uninterpreted
constant symbol v. An immutable term would be x+ y, since
its value cannot be modified without modifying the values of
x or y.

To formally define mutability, we need to account for the
presence of quantified logical variables. We say that a formula
or term φ refers to a term t if some non-variable subterm of
φ can be unified with t. For example, the formula g(c) = d
refers to the term g(X) (where X is a variable) because we
can unify g(c) and g(X) by replacing X with c. Given the
constraint g(c) = d, we cannot define g(X) independently,
because the definition we choose might assign g(c) a value
other that d, so might be inconsistent with g(c) = d.

We write Vars(t) for the set of variables occurring free in
term t and say that formula ψ preserves satisfiability of φ if
satisfiability of φ implies satisfiability of φ ∧ ψ.

Definition 2: A term t is mutable if, for all formulas φ not
referring to t, every closed formula of the form ∀Vars(t).(t =
e), where e does not refer to t, preserves satisfiability of φ.

In other words, a mutable term can be defined arbitrarily
while preserving satisfiability of φ, so long as φ does not refer
to that term. Note that in the definitional formula ∀Vars(t).(t =
e), we require that e not refer to t so that the definition is
not circular. As an example, if g is an uninterpreted function
symbol and X is a variable, then g(X) is mutable. Some terms
with interpreted functions are also mutable. An important
example is the term f(v) where f is a destructor of an
inductive datatype and v is a some uninterpreted constant.
For example, say v is constant of a record type, and f(v)
represents the f field of record v. We wish to define f(v) = e
for some value e. We can start with any model of formula φ
and change the value of the f field of v to e. If φ does not
refer to f(v) this leaves the truth value of φ unchanged. In
particular, we will not change the evaluation of a term f(w)
representing the f field of record w.

We assume we have several procedures at our disposal.
The procedure Mutable recognizes some syntactic class of

mutable terms (for example, constants or destructors applied
to constants). The procedure UpdateStruct takes a model of
a set of constraints, and updates it so that t = e, where e is
some value, provided t is mutable and not referred to in φ.
For example, for a field reference f(v), we set the f field of
constant symbol v to e. The procedure StructureToConstraints,
used also in SOLVERANDOM of Sec. III, converts a structure Σ
to a characteristic formula.

Algorithm SOLVE in Fig. 2 first, calls a procedure Par-
tialEval to partially evaluate the constraints in the given
state interpretation Σ. This replaces any subterm that can be
evaluated to a literal by its value. For example, in a structure
that maps v to 0, the term g(v+1) partially evaluates to g(1).
This is an important optimization because it can eliminate
dependencies on large structures in the state. As an example,
in a structure that maps a to the array [0, 1, 2], the term len(a)
partially evaluates to 3. Thus, partial evaluation may eliminate
references to large data structures such as arrays. Then the
algorithm searches at line 4 for a constraint c of the form
t = e where t is mutable. For simplicity, we only handle the
case where t is a ground term. If t does not unify with any
non-variable subterms of the remaining constraints or e, we
call SOLVE recursively to solve the remaining constraints. We
then evaluate term e in the resulting model Ma and update
Ma so that t = e, using the procedure UpdateStruct. We know
this can be done because t is mutable.

1 function SOLVE (M,Σa,C)
2 // find an interpretation Ma of Σa s. t. M,Ma |= C
3 C ← PartialEval(M,C)
4 choose c ∈ C of the form t = e such that
5 Mutable(t) and ¬UnifiesWithSubterms(t, (C \ {c}) ∪ {e}):
6 Ma ← SOLVE (M,Σa,C \ c)
7 if Ma 6= ⊥:
8 return UpdateStruct(Ma,t,Eval(M∪Ma,e))
9 else: // if there is no such c

10 χ ← StructureToConstraints(M ↓ vocab(C))
11 Ma ← SOLVERANDOM(C ∪ χ)
12 if Ma 6= ⊥:
13 return Ma ↓ Σa
14 return ⊥

Fig. 2. Solve constraints using field extraction

On the other hand, if we do not find a constraint that we
can extract, we continue, at line 10, to solve the full constraint
set C. We remove from M the valuations of any symbols on
which the constraints do not depend. Here, vocab(C) refers
to the set of uninterpreted symbols in C. This may eliminate
large data values such as the data array in our example. Then
we convert Σ to a characteristic formula using the procedure
StructureToConstraints. At line 11, we apply SOLVERANDOM
to produce a model of this formula. Assuming it is satisfiable,
we return the model projected on the action parameters Σa (at
line 13.)

Consider again our example. Partial evaluation replaces the
term len(data) by a numeral (say, 42). The algorithm extracts
the definition pyld = segment(data, bgn, end) because pyld is
mutable and not referred to in the remaining constraints bgn <

end ∧ end < 42. It then recurs on these constraints. Since
this removes the last dependence on data, its interpretation
is removed from the state structure. Now the constraint can
be easily solved. Returning from the recursive call, we then
evaluate the term segment(data, bgn, end) and update pyld to
this value. This approach can result in a large improvement in
solving performance.

V. TESTING PRAGMATICS

In this section, we consider some additional issues that arise
in applying NCT in practice.

A. The test shim

Thus far, we have tacitly assumed we have a way to
compose the mirror process with the collection of processes
in a locale. In practice, this may be a non-trivial problem. The
processes in the locale consist of software, expressed in some
programming language and interpreted by a physical machine,
likely with the assistance of a good deal of additional software,
including a language run-time and an operating system. We
need some way to translate between the abstract events of our
specification and real occurrences in this physical system (for
example, instances of API calls, or signals on a wire). We will
call this translation process a shim.

One approach to making a shim would be to replace the run-
time environment of the software components being tested by
a virtual or simulated environment. For example, suppose the
software is written in C and communicates over the network
using calls to the Unix sockets API. We could simulate these
calls with calls into the shim that would translate send calls
into abstract send events, and abstract receive events into the
return values of receive calls. There are significant difficulties
in this approach, however. For one, implementations may
be written in different languages and use different system
API’s. This means we may need a different shim for each
implementation.

A much simpler approach would be to test the software
through the real physical network. In this approach the shim
handles receive events of a process by sending it a message
over the network, and interprets messages received over the
network from the process as send events of that process. It is
reasonable to ask, however, whether this testing procedure is
sound. That is, is it not possible that delays or duplications
introduced by the physical network (or a loop-back interface
in the operating system) will mask a protocol violation, or
perhaps cause one?

We will argue informally that, under reasonable assump-
tions, compositional testing via the network is sound. We
assume a network model in which the network guarantees only
not to invent messages. We can think of this network as a
composition of two groups of processes, reception processes
denoted by Rcpi, and delivery processes denoted by Dlv i.
For each input channel Inpi of the network, the reception
process Rcpi inputs messages on Inpi and outputs them on
a commit channel Commit i. For each output channel Outi of
the network, the delivery process Dlv i inputs messages from

all of commit channels and output them to Outi. See Fig. 3
for an illustration.

Inp	1	

Rcp	1	

Commit	1	

Dlv	1	

Out	1	

Inp	i	

Rcp	i	

Commit	i	

Dlv	i	

Out	i	

Inp	n	

Rcp	n	

Commit	n	

Dlv	n	

Out	n	

Fig. 3. The reception and delivery processes

The reception and delivery processes, like the network as
a whole, promise only not to invent messages. The network
modeled in this way is externally indistinguishable from the
network model without the commit events.

Suppose that instead of using φ to specify the message send
events of our processes, we specify the imaginary commit
events. When we decompose the system into locales, we in-
clude in the locale of each process its corresponding reception
and delivery processes. Our test process is the same as before,
except that now the mirror is communicating with the test
process through processes that arbitrarily delay and duplicate
messages, in other words, processes that act like a network.
Testing through the physical network can be thus be viewed as
simulating the imaginary reception and delivery processes in
our network model. The physical network will not, of course,
simulate all possible reorderings of messages allowed by the
model. However, by adding random reorderings in the network
we can simulate all possible message arrival orders with non-
zero probability and thus maintain soundness. Provided we
specify the protocol in a way that allows for arbitrary delays
and duplications, it is sound to test implementations of the
protocol in situ, through a physical network or operating
system. This greatly simplifies the problem of testing many
implementations of the same protocol.

B. Background assumptions

Often, in specifying of a protocol, we must make some
assumptions that are not justifiable within the model we are
using. An example of this is symmetry breaking. To establish
identities of processes on a network, or to avoid deadlocks,
we may assume that processes have access to some source of
randomness and that two processes will make the same random
choices with negligible probability (e.g., [23], [24] and IEEE
1394.). We cannot prove that two processes do not choose the
same nonce value. Rather, we wish to ignore system executions
in which they do.

Such assumptions do not fit into our compositional frame-
work because, when they fail, there is no single process that we
can blame. For this reason, we will augment our compositional
rule with a background assumption β. We can express the idea

that a process φ does not cause φ to fail without breaking the
background assumption by this triple:

〈β ∧ φ〉 π 〈β ⇒ φ〉

The implication on the right allows π to produce any output
that violates β, because we do not care about such traces. The
new rule for closed systems is:

for all ` ∈ L: 〈β ∧ φ〉 ‖ ` 〈β ⇒ φ〉
‖ Π |= β ⇒ φ

(4)

That is, if a locale can only cause the property to fail by
violating the background assumption, then all traces of the
composition that do not violate the assumption must satisfy
the property.

Example 7. Recall Ex. 6 in which we could not rule out
requests from different processes having the same connection
id. Obviously, no single client process can enforce this require-
ment, since the client cannot see the messages of all other
clients. Rather, we assume that the connection ids are large
random numbers, and thus we wish to ignore traces in which
two clients choose the same connection id. We can express
this assumption as a safety property with a state relation U
that records the set of pairs (c,N) such that nonce N has been
used on channel c. The background assumption β is expressed
using the following actions:

SND(M,N,D): (∀c.(U(c,N)⇒ c = p̂))
→ {U(p̂, N) := true}

RCV(M,N,D): true → {}

Here, we use the special symbol p̂ that represents the channel
on which the event occurs. Thus, this specification is not
process-oblivious. With this β, the mirror process of a client is
prevented from generating connection ids that conflict with the
client, and the checker ignores cases where the client produces
a conflicting id. Thus, we can prove compositionally that the
clients and servers together implement protocol specification
φ under assumption β. �

VI. SPECIFYING AND TESTING QUIC

We now illustrate the application of the NCT methodology
described above using a case study on the QUIC transport
protocol. Here, we describe QUIC and the case study only to
the extent necessary to illustrate the application of the various
aspects of the methodology, such as locales and the dependent
fields optimization. A full account of the QUIC case study can
be found in [25].

The case study was designed to test several hypotheses:
(A) that Internet protocols such as QUIC require a testing

regimen that is adversarial and checks protocol compli-
ance;

(B) that this can be provided effectively by a specification-
based testing approach using a safety specification, and

(C) that a suitable specification can be distilled in practice
from standards documents and compositional testing of a
collection of implementations.

An explicit non-goal of the study is to produce a full or com-
plete specification of QUIC. The function of the specification
in the case study is to aid in finding bugs in implementations
of QUIC.

A. An introduction to QUIC

QUIC can be thought of as a stack of protocols, each of
which provides one aspect of the overall transport service.
At the bottom of the stack, UDP provides datagram ser-
vices. Above this the packet protection layer provides secrecy
by encrypting QUIC packets, which are encapsulated into
UDP datagrams. Above this, the packet protocol provides
loss detection using sequence numbers. The frame protocol
provides (among other things) ordered stream data. Sequences
of frames are encapsulated in packets. Each data frame carries
a stream identifier, a sequence of bytes, and the offset of those
bytes within the stream. This allows the stream data to be
reconstructed at the receiving end in spite of datagram re-
ordering and supports multiple independent streams. Above
the frame protocol, the security handshake protocol, which is
a modified version of TLS 1.3, exchanges handshake messages
using the frame protocol. Once a shared secret has been
established by the handshake protocol, keys can be derived for
encryption and decryption by the protection layer. Finally, at
the top is the application layer in which peers send and receive
reliable, secure, authenticated data streams. See Figure 4.

h�W

�ůŝĞŶƚ ^ĞƌǀĞƌ

h�W

WƌŽƚĞĐƚŝŽŶ WƌŽƚĞĐƚŝŽŶ

WĂĐŬĞƚ WĂĐŬĞƚ

&ƌĂŵĞ &ƌĂŵĞ

^ĞĐƵƌŝƚǇ�;d>^Ϳ ^ĞĐƵƌŝƚǇ�;d>^Ϳ

�ƉƉůŝĐĂƚŝŽŶ �ƉƉůŝĐĂƚŝŽŶ

Fig. 4. QUIC protocol layers. Arrows represent dependencies between layers.

The basic unit of communication in QUIC is the connection.
A connection is a point-to-point channel that provides multiple
independent data streams. A connection is established when a
client sends an initial packet to a server. This packet provides
a connection identifier (CID) to the server, a string of bytes
that uniquely identifies the connection. It also contains a frame
with the first security handshake message. The server responds
with its own initial packet, containing the server’s CID and
the second handshake message. Subsequent handshake packets
are protected with handshake keys derived from the initial
messages. Once the handshake is complete, session keys are
available and transmission of session data commences. QUIC
packet types are thus partitioned into four encryption levels
using different keys: initial, handshake, 0-RTT (for early data)
and 1-RTT (for normal data with forward secrecy).

In addition to CID’s, QUIC packets contain unique sequence
numbers that are used to detect packet loss. A peer sends
acknowledgment (ACK) frames to indicate packet sequence
numbers that it has received. A packet that is not acknowl-
edged is considered lost after some time. Rather than retrans-
mit the packet, the peer retransmits its frames, as needed, in
subsequent packets with different sequence numbers. Clients
can migrate to new network addresses. Before using the new
address, the server validates that the client actually controls
the new address using special frames. Additional CID’s can
be issued to prevent connection tracking by attackers. The draft
protocol, as of version 17, has 20 frame types that are used
for various purposes: data transmission, loss detection, flow
control, connection state management, management of CID’s
and so forth.

B. A formal safety specification for QUIC

Our formal safety specification for QUIC is written as a
collection of actions in the Ivy language [26]. These actions
describe events at each layer of the protocol. This decision
was crucial for performance of test generation. That is, in
principle, we could have specified only the UDP datagrams
that appear on the network (or more properly, their cleartext
content). However, generation of these events using an SMT
solver would be too slow for testing purposes. By breaking
large events into smaller events at higher protocol layers and
applying dependent field extraction, we make test generation
practically feasible.

The most interesting actions are at the packet and frame
layer. The packet action has three parameters: the source
and destination endpoints (IP address and port number) and
the packet content. The packet content is expressed as a
record having various fields representing the encryption level,
source and destination CID’s, sequence number and payload,
the last represented as an array of frames carried by the
packet. The guard of the packet action specifies, for example,
correct use of CID’s and sequence numbers. It also defines
the payload field to be a sequence of frames enqueued by
the frame protocol for the given encryption level. That is,
these records are communicated from the frame protocol to the
packet protocol via the specification state. This is one example
of the use of dependent field extraction. By delegating the
production of frames to separate frame protocol actions and
defining the packet payload appropriately, we avoid sending
the actual frames to the SMT solver. To use this optimization,
it was crucial to specify events at multiple layers. The update
function of the packet action records various needed history
information, such as which sequence numbers have been used
and which frames have been transmitted in packets.

Each frame type in the frame protocol is a specified by
a corresponding action. As an example, a frame action of
STREAM type carries application data. The parameters of this
action are the frame content, the source and destination CID’s
and the encryption level. The stream frame record contains a
stream id field as well as length and offset fields indicating
that range of data within the stream that is begin transmitted.

The guard contains a variety of requirements. For example,
the source and destination CID’s must be connected, and the
encryption level must be ‘1-RTT’ (that is, STREAM frames
must be sent only with 1-RTT encryption). We also require
that the necessary encryption keys have been generated by the
security layer. Crucially, the data bytes contained in the frame
must match the corresponding bytes at the application layer.
We omit a variety of other requirements here. The update
of the action enqueues the frame for eventual transmission
in a packet and performs and stores some additional history
information.

Another use of dependent fields occurs in the STREAM
frame action. As in Sec. IV, we define the data in the frame
as a segment of the application data in the protocol state. This
prevents this large array from slowing the SMT solver and
allows our tester to fetch HTML files from the real server
(and allows the corresponding client tester to serve files).

The protocol layer actions behave like interleaving parallel
processes, sharing data through the specification state. For
example, the security handshake protocol exchanges messages
with the frame protocol via shared state symbols and also
shares computed cryptographic secrets with the protection
layer.

Overall, our current formal safety specification of the QUIC
wire protocol consists of 52 data type declarations, 45 state
symbols (the functions and relations in the state signature Σ)
and 30 actions. The data type declarations are primarily record
types that represent packets, frames, TLS messages and the
like, as well as basic types for entities like CID’s and sequence
numbers. The state symbols carry a wide variety of protocol
history information, for example, the association between
client and server CID’s, the used and acknowledged sequence
numbers for each connection, the IP addresses used by the
client, the handshake and application data transmitted, the
status of streams, the flow control parameters and so on.

C. Creating the test process

Given a specification expressed as a collection of actions,
the Ivy tool can generate a randomized mirror process. This
process is expressed in the C++ language and use the Z3 SMT
solver [27] with Algorithm SOLVERANDOM to generate events
consistent with the specification.

The handshake protocol illustrates a convenient use of
locales, as described in Subsec. II-C. In particular, because we
lacked a sufficiently detailed formal specification of the TLS
1.3 protocol from which to generate events at the security
layer, we instead used an actual implementation of TLS
1.3 [28] as a self-specifying process. For example, when
testing a server implementation, the instances of TLS on the
client side are considered part of the locale, and are executed
concretely. This sacrifices some generality of testing, since the
concrete implementation does not generate all possible TLS
behaviors. On the other hand, it helps greatly to circumscribe
the formal specification effort. The ability to use an off-
the-shelf TLS 1.3 implementation was an important enabling
factor in testing QUIC. In testing clients, we use a background

APPLICATION
SECURITY

FRAME
PACKET

PROTECTION
UDP

MIRROR SERVER

UDPNET

SHIM

TLS 1.3

Fig. 5. Structure of the test process for QUIC servers. Processes in the locale
are in grey. The shim connects the mirror to the locale and also infers hidden
server events at higher protocol layers.

assumption (Subsec. V-B) to filter out cases where the client
violates the specification by choosing the same nonce CID as
another client.

The shim that connects the mirror process to the concrete
software under test is also written in the Ivy language. We
take the approach described in Subsec. V-A of testing through
the physical network so that we can easily test a variety of
implementations of QUIC. The shim is also used to connect
security layer events in the mirror with concrete API calls of
the TLS 1.3 implementation. The shim has one further task.
That is, the concrete protocol implementations do not expose
protocol events above the UDP layer. Instead of instrumenting
the implementation code to output these events, we infer them
in the shim by inspecting the packets on the wire. That is,
a UDP datagram on the wire allows us to infer the hidden
events that must have occurred in the past at the higher layers.
This inference is straightforward, and is accomplished with
additional 28 lines of Ivy code.

As noted in Sec. III, the user must choose an appropriate
target distribution for sampling out of the space enabled
events. The Ivy tool provides some primitive mechanisms
for doing this. To obtain a diverse sampling of behaviors of
the implementation, it is important to choose this distribution
carefully. For example, we lowered the probability of certain
events, such as CONNECTION CLOSE frames, that tend to
cancel all activity. We also limited the range of connection ids,
since choosing a different connect id for each packet would
result in no progress of the protocol.

The overall structure of the test process is depicted in
Fig. 5. This shows how the mirror process generated by Ivy
is connected to the various processes in the test locale, via
the shim. Interacting with the protocol implementation over
the network, the mirror can generate protocol events at rate of
approximately 10Hz (or < 0.01 Hz without dependent field
extraction).

D. Results

We now consider the results of the interactive process of
developing the protocol specification and testing implementa-
tions against it. We applied the testing methodology to HTTP
servers based on the four chosen implementations of QUIC.

We wrote an initial version of the specification based on
draft versions of the QUIC protocol standards documents [29].
We then tested the various server implementations against
this specification. After analysis, failures of these tests often

indicated errors in the implementations or the draft standard,
but sometimes also indicated errors in our safety specifica-
tion. Consultation with implementers was often required to
determine this. Failure of a guard in checking the process
output sometimes indicates that the guard is in fact too strong,
and that the output should have been allowed. On the other
hand, failure of a process to handle an input (for example, by
flagging a protocol error) sometimes indicates the that guard
that produced that input in the mirror is too weak and needs
to be strengthened to rule it out. Because testing revealed
when the specification is either too weak or too strong, we
were able to use it to develop an adequate specification for
testing QUIC implementations, confirming hypothesis C. In
particular, we found that it was challenging but possible to
keep up with successive draft versions of the protocol as they
were developed.

In addition to protocol compliance errors, we recorded
crashes of the servers and failures to make progress, which
we defined as an anomalously low rate of data transfer
during a test. Over the course of approximately four engineer
weeks of testing, this revealed a total of 27 errors in the
implementations. We also determined, where possible, the root
cause of the errors, and classified the reason for detection of
the errors. These categories are ‘adverse stimulus’, meaning
the the randomized tester produced an unexpected message
order or parameter value, and ‘compliance violation’, meaning
that we detected the error because we monitored the trace with
a formal specification. Of the 23 errors to which we were
able to assign root causes, all were classified as being either
due to ‘adverse stimulus’ (78%) or to ‘compliance violation’
(57%) or both. None were detected by previous directed testing
or interoperability testing. This confirms hypothesis A: it is
important both to test compliance to a common standard,
and to test in an adversarial environment. We also found that
four of the errors were caused at least in part by ambiguities
or contradictions in the draft RFCs and four were possibly
exploitable by an attacker (apart from crashes, which might
also be exploitable in various ways).

This also illustrates an important point about specifications:
a formal specification of a highly complex system need not
and perhaps cannot be fully complete (in the sense of saying
everything about the system that we want to say) or even
fully correct. We should judge a specification by the extent
to which it serves its function. In this case the function is
primarily to expose errors via testing. Our specification of
QUIC is limited to safety properties and leaves some protocol
aspects unspecified, but it is sufficient to interact with real
servers to transfer files on the network without the servers
detecting protocol errors. Moreover, it is strong enough to
detect numerous protocol violations, confirming hypothesis B.

We give two examples of implementation errors we detected
that represent vulnerabilities. One of these is a possible denial-
of-service (DoS) attack by an off-path attacker. We discovered
a trace in which a server ceased at some point to send
any packets (representing a progress failure). Further analysis
revealed that this was caused by a rapid switching of the client

IP address between two values, which might be simulated by
an attacker. This was determined to be a weakness not just
in the implementation, but also in the standard, which was
subsequently modified to mitigate such attacks. This error was
detected only because the source IP address was randomized
by the tester, producing an adverse stimulus. Another vulnera-
bility we detected is a data leak in one implementation, similar
to the “heartbleed” vulnerability discovered in SSL/TLS [30].
This resulted in arbitrary server memory contents being sent
to the client, and was detected when a server sent incorrect
bytes in a retransmission of a stream frame, violating the
specification. The apparent cause of this was adverse use of
flow control by the randomized tester. It is interesting to note
that, although we tested only for violation of safety properties,
a number of security vulnerabilities emerged from the tests.
One interpretation of this is that our tester, while producing
only legal protocol behavior, nonetheless produced a wide
variety of unexpected stimulus. Pushing the boundaries of the
protocol is in a sense form of attack, and a difficult one to
detect.

VII. FUTURE WORK

Though it is clear that the randomized NCT approach is
effective in exposing previously unseen behaviors of imple-
mentations, there are many ways in which it could potentially
be improved to better explore the space. For example, one
could “fuzz” randomly generated traces to produce new traces,
perhaps using code coverage as a heuristic. This could be
done using white-box methods, as exemplified by the KLEE
tool [5]. In these methods, SMT solvers are used to discover
inputs that drive the implementation along different code paths.
To date, white-box methods have not been very effective in
producing deep errors that require long exchanges of messages
in Internet protocols [8], [31]. However, they might be an
effective adjunct to randomized specification-based testing.
Another promising approach is grey-box testing [32]. This
method essentially performs a random walk in the space of
inputs starting from certain “seed” inputs. Information about
covered paths in the implementation is used to bias the walk.
Traces produces by NCT could be used as such seeds. While
we do not believe that code coverage is a valid measure
of the quality of a test regime, we do expect that coverage
information can be used effectively as a heuristic guide in
NCT to more effectively find bugs.

NCT has the property that it can generate the long legal
sequences of messages that are needed to go deep in the state
space of the implementation. We think this property could be
exploited in many applications, especially in security. That
is, any technique that is used to search for vulnerabilities or
exploits could potentially benefit from having a rich diversity
of starting states. The fact that we accidentally discovered
some vulnerabilities in QUIC and its implementations is
evidence of this. We intend to explore this possibility in the
future. We are also interested in incorporating specific attacker
models into the methodology, and in the question of how

to generalize accidentally discovered attack traces into attack
strategies that can be replayed.

VIII. CONCLUSIONS

In this paper we developed a NCT, a network-centric
methodology for compositional testing. NCT enables one to
apply modular assume-guarantee reasoning principles to the
development of Internet protocols, and to validate implemen-
tations through adversarial testing. Unlike previous composi-
tional approaches, NCT does not use local specifications of
processes. Rather, it is based on single global specification of
the protocol and a notion of causality of failures that assigns
blame for the failure of the specification to a single process.
This allows us to effectively generate tests for protocols
with an unbounded number of participants, and to monitor
specifications on a network. For each process, the global
specification serves as both an assumption and a guarantee.
This makes it possible to automatically generate randomized
test environments that produce adverse stimulus and, at the
same time, check the implementation’s responses for specifi-
cation compliance. This fulfills the need we identified to test
implementations against a common formal specification, in an
adversarial manner. Moreover, because all assumptions of one
process are guarantees for another, NCT allows to detect when
the specification is too weak and to refine it (in fact, we did
this many times with QUIC). Thus, we can apply the NCT
methodology to distill formal specifications from the protocol
knowledge embodied in the implementations.

To permit randomized generation of complex protocols such
as QUIC, we developed pragmatic techniques for randomized
constraint solving that approximate a desired distribution,
and a method of decomposing the solution process called
‘dependent field extraction’ that makes it possible to generate
protocol traffic in the case of deeply nested message structures
with large data transfers. To enable this, we divided the
specification of QUIC into actions at the various protocol
layers. This methodology allowed us to test the complete QUIC
stack as a black box, a necessity in the case of implementations
that are not cleanly layered.

We saw in the case of QUIC that adverse stimulus generated
by the randomized tester, combined with monitoring by the
formal specification, was very effective in detecting errors in
the implementations that were not detected by other means. As
a side effect, we identified vulnerabilities in both the imple-
mentations and the standard, and exposed cases of ambiguities
and contradictions in the standard that have been remediated.
This shows clearly that a formal specification is a useful tool
in developing and implementing a network protocol.

As we noted, the SSL/TLS ecosystem suffered many diffi-
culties owing to the lack of compliance of implementations in
the wild to an unambiguous common protocol specification.
Our hope is that providing such a specification in a testable
form will be a step in preventing such difficulties in QUIC,
which is planned as the future basis of the World-Wide
Web. We also hope that the form of the specification is
simple enough that future developers of QUIC can use it as

a reference, though this remains to be seen. In general, we
see this work as a step in the process of integrating formal
specifications as a complement to other approaches in Internet
standardization.

REFERENCES

[1] T. M. Corporation, “CVE-2014-3566,” https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3566, 2014.

[2] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,”
in 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 2015, pp.
535–552. [Online]. Available: https://doi.org/10.1109/SP.2015.39

[3] I. Ristic, “POODLE bites TLS,” December 2014.
[4] H. Lee, J. Seibert, D. Fistrovic, C. E. Killian, and C. Nita-Rotaru,

“Gatling: Automatic performance attack discovery in large-scale dis-
tributed systems,” ACM Trans. Inf. Syst. Secur., vol. 17, no. 4, pp. 13:1–
13:34, 2015.

[5] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in 8th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings. USENIX Association, 2008, pp. 209–224.

[6] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub,
“Implementing TLS with verified cryptographic security,” in 2013 IEEE
Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013. IEEE, 2013, pp. 445–459.

[7] A. Chudnov, N. Collins, B. Cook, J. Dodds, B. Huffman,
C. MacCárthaigh, S. Magill, E. Mertens, E. Mullen, S. Tasiran, A. Tomb,
and E. Westbrook, “Continuous formal verification of amazon s2n,” in
Computer Aided Verification - 30th International Conference Part II,
vol. 10982. Springer, 2018, pp. 430–446.

[8] F. Rath, D. Schemmel, and K. Wehrle, “Interoperability-guided testing
of QUIC implementations using symbolic execution,” in Workshop on
the Evolution, Performance, and Interoperability of QUIC (EPIQ 2018).
ACM, December 2018, pp. 15–21.

[9] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann,
and L. Nachmanson, Model-Based Testing of Object-Oriented Reactive
Systems with Spec Explorer, ser. Lecture Notes in Computer Science.
Springer Verlag, January 2008, vol. 4949, pp. 39–76.

[10] J. Paris and T. Arts, “Automatic testing of TCP/IP implementations using
quickcheck,” in Proceedings of the 8th ACM SIGPLAN Workshop on
Erlang, Edinburgh, Scotland, UK, September 5, 2009. ACM, 2009, pp.
83–92.

[11] J. Bozic, L. Marsso, R. Mateescu, and F. Wotawa, “A formal TLS
handshake model in LNT,” in Proceedings Third Workshop on Models
for Formal Analysis of Real Systems and Sixth International Workshop
on Verification and Program Transformation, MARS/VPT@ETAPS 2018,
and Sixth International Workshop on Verification and Program Trans-
formation, Thessaloniki, Greece, 20th April 2018. To be published in
EPCT, 2018, pp. 1–40.

[12] B. Neelakantan and S. V.Raghavan, “Protocol conformance testing – a
survey,” in Computer Networks, Architecture and Applications, S. V. R.
et al., Ed. Springer, 1995, ch. 1, pp. 175–191.

[13] S. Bishop, M. Fairbairn, H. Mehnert, M. Norrish, T. Ridge, P. Sewell,
M. Smith, and K. Wansbrough, “Engineering with logic: Rigorous test-
oracle specification and validation for TCP/IP and the sockets API,”
JACM, vol. 1, no. 66, pp. 1–77, 12 2018.

[14] J. Misra and K. M. Chandy, “Proofs of networks of processes,” IEEE
Trans. Software Eng., vol. 7, no. 4, pp. 417–426, 1981.

[15] K. A. Elkader, O. Grumberg, C. S. Pasareanu, and S. Shoham, “Au-
tomated circular assume-guarantee reasoning,” Formal Asp. Comput.,
vol. 30, no. 5, pp. 571–595, 2018.

[16] D. Giannakopoulou, C. S. Pasareanu, and C. Blundell, “Assume-
guarantee testing for software components,” IET Software, vol. 2, no. 6,
pp. 547–562, 2008.

[17] K. L. McMillan, “Modular specification and verification of a cache-
coherent interface,” in 2016 Formal Methods in Computer-Aided Design,
FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016. IEEE,
2016, pp. 109–116.

[18] W. P. de Roever, H. Langmaack, and A. Pnueli, Eds., Compositionality:
The Significant Difference, International Symposium, COMPOS’97, Bad
Malente, Germany, September 8-12, 1997. Revised Lectures, ser. Lecture
Notes in Computer Science, vol. 1536. Springer, 1998.

[19] O. Grumberg and D. E. Long, “Model checking and modular
verification,” ACM Trans. Program. Lang. Syst., vol. 16, no. 3, pp. 843–
871, 1994. [Online]. Available: https://doi.org/10.1145/177492.177725

[20] M. Musuvathi and S. Qadeer, “CHESS: systematic stress testing
of concurrent software,” in Logic-Based Program Synthesis and
Transformation, 16th International Symposium, LOPSTR 2006, Venice,
Italy, July 12-14, 2006, Revised Selected Papers, ser. Lecture Notes in
Computer Science, G. Puebla, Ed., vol. 4407. Springer, 2006, pp. 15–
16. [Online]. Available: https://doi.org/10.1007/978-3-540-71410-1 2

[21] K. S. Meel, M. Y. Vardi, S. Chakraborty, D. J. Fremont, S. A.
Seshia, D. Fried, A. Ivrii, and S. Malik, “Constrained sampling
and counting: Universal hashing meets SAT solving,” in Beyond
NP, Papers from the 2016 AAAI Workshop, Phoenix, Arizona,
USA, February 12, 2016., ser. AAAI Workshops, A. Darwiche,
Ed., vol. WS-16-05. AAAI Press, 2016. [Online]. Available:
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12618

[22] N. Kitchen and A. Kuehlmann, “A markov chain monte carlo sampler
for mixed boolean/integer constraints,” in Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26
- July 2, 2009. Proceedings, ser. Lecture Notes in Computer Science,
A. Bouajjani and O. Maler, Eds., vol. 5643. Springer, 2009, pp. 446–
461. [Online]. Available: https://doi.org/10.1007/978-3-642-02658-4 34

[23] D. Lehmann and M. Rabin, “On the advantages of free choice: A
symmetric and fully distibuted solution to the dining philosophers
problem (exended abstract),” in POPL’81, 1981, pp. 133–138.

[24] A. Itai and M. Rodeh, “Symmetry breaking in distributed networks,”
Inf. Comput., vol. 88, no. 1, pp. 60–87, 1990.

[25] K. L. McMillan and L. D. Zuck, “Formal specification and testing of
QUIC,” in Proc. ACM Special Interest Group on Data Communication
(SIGCOMM19). ACM, 2019, to appear.

[26] K. L. McMillan, “Ivy,” http://microsoft.github.io/ivy, Last updated 2019.
[27] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in

Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, 2008,
pp. 337–340. [Online]. Available: https://doi.org/10.1007/978-3-540-
78800-3 24

[28] P. T. team, “picotls,” https://github.com/h2o/h2o/tree/master/deps/picotls,
2019.

[29] Internet-Draft, “QUIC: A UDP-based multiplexed and secure transport
(version 18),” https://tools.ietf.org/id/draft-ietf-quic-transport-18, 2019.

[30] T. M. Corporation, “CVE-2014-0160,” 2014. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1060

[31] L. Pedrosa, A. Fogel, N. Kothari, R. Govindan, R. Mahajan,
and T. D. Millstein, “Analyzing protocol implementations for
interoperability,” in 12th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 15, Oakland, CA, USA, May
4-6, 2015. USENIX Association, 2015, pp. 485–498. [On-
line]. Available: https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/pedrosa

[32] M. Böhme, V. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” IEEE Trans. Software
Eng., vol. 45, no. 5, pp. 489–506, 2019. [Online]. Available:
https://doi.org/10.1109/TSE.2017.2785841

