
Deductive Verification in Decidable Fragments
with Ivy

Kenneth L. McMillan1 and Oded Padon2

1 Microsoft Research, USA
kenmcmil@microsoft.com

2 Tel Aviv University, Israel
odedp@mail.tau.ac.il

Abstract. This paper surveys the work to date on Ivy, a language and
a tool for the formal specification and verification of distributed sys-
tems. Ivy supports deductive verification using automated provers, model
checking, automated testing, manual theorem proving and generation of
executable code. In order to achieve greater verification productivity,
a key design goal for Ivy is to allow the engineer to apply automated
provers in the realm in which their performance is relatively predictable,
stable and transparent. In particular Ivy focuses on the use of decidable
fragments of first-order logic. We consider the rationale or Ivy’s design,
the various capabilities of the tool, as well as case studies and applica-
tions.

Keywords: Deductive verification · Distributed systems · Safety ver-
ification · Liveness verification · Paxos · Decidable logics · Effectively
propositional logic · Cache coherence · Model checking · Specification-
based testing

1 Introduction

Ivy is a language and a tool for the formal specification and verification of
distributed systems. The rationale underlying Ivy is that, to achieve a high degree
of productivity in verification, the system, its representation and its proof must
be designed in advance to take maximum advantage of automated provers while
avoiding their weaknesses. Ivy is open-source software and is freely available
under an MIT license [25].

The use of automated provers in program verification has a long history, going
back to the work of Nelson and Oppen [28,29] and the Boyer-Moore prover [9].
More recent systems include ESC Java [12], Dafny [22] and F* [40]. Program
proofs using such tools are typically more succinct than proofs using tactical the-
orem provers such as Coq [4] and Isabelle/HOL [30] by one or two orders of mag-
nitude (e.g., compare the Ironfleet project [14] using Dafny to the Verdi [42,43]
project using Coq). However, it is unclear that this succinctness leads to a pro-
portionate improvement in verification productivity. In practice, users struggle
with the unpredictability, instability and lack of transparency of the automated



2 K. L. McMillan and O. Padon

verifiers [11, Section 9.1]. Particularly problematic is the heuristic instantiation
of quantifiers. This leads to unpredictable failures that are extremely hard to
diagnose and may be triggered by small, seemingly irrelevant changes in the
prover’s input. By lack of transparency, we mean that no clear indication is
given of the cause of failures. It is somewhat as if one were trying to develop a
software system using a compiler that randomly failed to produce code, with-
out producing any useful error message. In an iterative development process
requiring frequent recompilations, this would be untenable.

To try to realize the verification productivity that automated provers promise,
the design of Ivy starts with two basic choices: a prover and an application do-
main in which we wish to produce efficient verified systems. The chosen prover
(at least initially) is Microsoft Z3 [27], a high-performance SMT solver [3] that
supports satisfiability queries in full first-order logic modulo a variety of theories.
The chosen application domain is distributed systems. The primary design goal
of Ivy is to allow an engineer to quickly and intuitively reduce the proof of a
distributed system to proof goals in a logical fragment for which Z3 is a decision
procedure. We can think of Ivy as a test of the following three-part hypothesis:

1. Predictability, stability and transparency of proof automation lead to greater
verification productivity,

2. Within the decidable fragments used by Ivy, the Z3 prover has these prop-
erties, and

3. With appropriate language and tool support, a we can reduce proofs of
distributed systems to subgoals in this fragment.

2 Language Design

The use of decidable logics also has a long history in program verification. The
choice of a logic generally depends on the application domain. For example, Klar-
lund proposed the use monadic second-order logic (MSO) for reasoning about
manipulations of inductive data structures [15]. For distributed protocols, we
posit that decidable fragments of first-order logic are more appropriate, since
these protocols usually lack recursive structures, and uninterpreted relations
and quantifiers can be used to reason about the multiple nodes or threads, as
well as messages, values, and other objects of the system.

The classical example of a decidable fragment of first-order logic is the
Bernays-Shönfinkel-Ramsey fragment (also known as EPR, for “effectively propo-
sitional”). This consists of formulas without function symbols, whose quantifier
structure is ∃ ∀ in prenex normal form. We can extend this in various ways. For
example, in a many-sorted setting, we can allow function symbols that are strat-
ified (i.e., there are no cycles in the graph that the function symbols and the ∀ ∃
quantifier alternations induce on the sorts). From this we observe that (1) quan-
tifier structure is critical, and (2) function symbols and quantifier alternations
should be used cautiously.



Deductive Verification in Decidable Fragments with Ivy 3

2.1 Ivy’s procedural language

These considerations motivate several important design decisions in Ivy. First,
the programming language is imperative rather than functional. Partly this is
motivated by decidability. Often, though we are computing a total function,
we do not wish to specify it as such, since this could contribute to a function
cycle. Instead, we use a procedure and specify only partial correctness. Generally
speaking, we avoid any unnecessary assumptions of totality or termination for
decidability reasons. Second, the only primitive data type is the Boolean type.
This is because primitive data types would introduce both total functions and
axioms whose quantifier structure could be problematic. Instead, variables in Ivy
hold first-order relations and functions over uninterpreted sorts as their values.
This gives the user control of the use of function symbols. By preference, when
reasoning about concrete data, we use relational abstractions whose axioms are
expressible in the decidable fragment.

Finally, Ivy generates verification conditions (VC’s) using the weakest pre-
condition calculus, much like other tools, such as Dafny. The primitive constructs
of the language have been chosen so that, not only are the VC’s always expressed
in first-order logic, but their quantifier structure is apparent from the program
source. These considerations are discussed in more detail in [38], which describes
the basic procedural language, which has since been extended.

Within these constraints, Ivy’s programming language is designed to be as
expressive as possible. We can express in Ivy any update to the variables whose
transition relation is expressible in first-order logic, using relational and func-
tional updates with free parameters. For example, the following assignment state-
ment removes the pairs (x, Y ) from relation r, for all Y :

r(x,Y) := false

The capitalized symbol Y is treated implicitly as a free parameter. The transition
relation of this statement can be expressed as

∀X,Y. r′(X,Y ) = false if X = x else r(X,Y )

We can also create pure first-order function closures. For example, this assign-
ment computes a function f from the current value of the function g and a
variable v:

f(X) := g(X,v)

While the semantics of this is easily expressed in first-order logic, compiling it
is a bit more subtle. The compiler creates a closure that captures the values of
g and v, allowing function f to be evaluated on demand.

Other first-order expressible updates, such as relational joins, are also possi-
ble. With quantifiers and parameterized updates, it is possible to describe pro-
cedures that are not actually computable. The compiler handles only a subset
of the language in which finite bounds on quantifiers can be statically inferred.
Uncomputable updates are still useful, however, in writing specifications.



4 K. L. McMillan and O. Padon

2.2 Modularity

Another important generalization we can make about decidability is that mixing
theories and quantifiers is problematic. For example, quantifier-free integer linear
arithmetic with function symbols is decidable, but adding quantifiers makes it
undecidable. Moreover, by mixing procedures that use function symbols, we
might create a cycle in the function graph and thus also lose decidability.

Ivy’s answer to this conundrum is modularity. That is, we hide problematic
theories or functions inside modules, to prevent their combinations from tak-
ing us outside the decidable fragment. As a very simple example, suppose we
require an index type t that forms a discrete total order. We implement this
type in a module I which provides an interface with certain operations, such as
incrementation (i.e., computing the successor of a value), and guarantees cer-
tain properties, such as the axioms of total order. Type t is interpreted as the
integers, that is, we instantiate the integer arithmetic theory for type t, giving
us interpretations for the signature {0, 1,+, <, . . .} over this type. However, only
module I sees this interpretation. Since its VC’s are quantifier free, Z3 can de-
cide them using its integer arithmetic theory. An application module A using
the index type t sees only its abstract specification, and not the integer theory.
Thus, it can use quantifiers safely. As we will observe in Section 4, this principle
can be applied in more complex situations, for example in refining an abstract
protocol model to an implementation.

To enforce the separation of theories, modularity in Ivy is quite strict. The
specification of a module is never allowed to reference internal state of the mod-
ule. Rather, the specification of a module provides an abstract notion of state.
This consists of a collection of monitors: procedures that synchronize with call
and return events at the interface, updating the abstract state. The monitors
contain assertions that act as either assumptions or guarantees for the modules.
Stateful monitors can be used, for example, to specify the interfaces of concrete
services, such as networking layers, or abstract models that are used only in the
proof.

2.3 The fragment checker

The decidable fragment used by Ivy is called the Finite Almost Uninterpreted
fragment or FAU [13], which is supported by Z3. FAU generalized the many-
sorted extension of EPR, and also allows restricted combination of quantifiers
and linear arithmetic. The Ivy verifier generates the verification conditions for
a program and checks syntactically that they fall into the FAU fragment. If
not, it provides a diagnostic message that explains the failure (for example, it
presents an illegal cycle of function symbols). This is important from the point
of view of transparency. That is, if a VC cannot be verified, some feedback must
be provided to help the user correct the situation and continue developing the
proof.



Deductive Verification in Decidable Fragments with Ivy 5

3 Expressiveness of Decidable Fragments of First-Order
Logic

Much of the verification using Ivy is done in a many-sorted extension of the EPR
fragment of first order logic that allows only allows stratified or acyclic quantifier
alternations and function symbols. Since it is a fragment of first-order logic, it
may seem to be too restricted for challenging verification tasks. For example,
first-order logic cannot express properties of arithmetic, graph reachability, or
inductive data structures. Quite surprisingly, the work on Ivy shows that pure
first-order logic, and even a decidable fragment thereof, is powerful enough to
capture everything that is needed to verify several complex distributed protocols.

Transitive closure of deterministic paths can be expressed in EPR. This was
used in [18,17,16] for linked data structures, and these ideas can also be used to
represent tree topologies, such as forwarding trees of routing algorithms [35]. This
also generalizes to other topologies, including rings [38], that can be similarly
axiomatized in EPR, and more recently general graphs of out-degree one [32].
The key idea is to take the transitive closure as a primitive relation, and use a
formula to represent edges. This allows for a sound axiomatization, which is also
complete for finite models. That is, every finite model of the axioms corresponds
to a graph of the suitable class. Due to the finite model property of EPR, this
completeness ensures that counterexamples obtained in the verification process
are never spurious.

Another useful axiomatization is that of quorums. Many distributed protocols
employ quorums that are defined by thresholds on set cardinalities. For example,
a protocol may wait for at least N

2 nodes to confirm a proposal before committing
a value, where N is the total number of nodes. This is often used to ensure
consistency. In Byzantine failure models, a common threshold is 2N

3 , where at
most a third of the nodes may be Byzantine. First-order logic cannot completely
capture set cardinalities and thresholds. However, we can exploit the fact that
protocol correctness relies on rather simple properties that are implied by the
cardinality threshold, and that these properties can be encoded in first-order
logic.

The idea is to use a variant of the standard encoding of second-order logic
in first-order logic. We introduce a sort for quorums, that is sets of nodes with
the appropriate cardinality, and use a binary relation member to capture set
membership. (Alternatively, we can add a sort that represents general sets of
nodes, with a unary predicate over it that represents “being a quorum”.) Then,
properties that are needed for protocol correctness can be axiomatized in first-
order logic.

For example, the fact that any two sets of at least N
2 nodes intersect is crucial

for many consensus protocols. This property can be expressed in first order logic:

∀q1, q2 : quorumi. ∃n : node. member(n, q1) ∧ member(n, q2)

For Byzantine consensus algorithms that use sets of at least 2N
3 nodes, they key

property is that any two quorums intersect at a non-Byzantine node. This can



6 K. L. McMillan and O. Padon

also be expressed in first-order logic:

∀q1, q2 : quorumii. ∃n : node. ¬byz(n) ∧ member(n, q1) ∧ member(n, q2)

These ideas are used in [36,37] to verify multiple consensus protocols from
the Paxos [19,20] family, showing that properties that are expressible in first-
order logic can be used to prove challenging protocols. For several variants, this
provided the first mechanical safety proof.

4 Using Modularity to Verify Implementations

While the techniques outlined in Section 3 allow one to verify distributed pro-
tocols at the abstract protocol level, they do not suffice to verify an executable
implementation. For verified executable implementations, we want to replace
the notion of axioms with a notion of interface specification in a modular, as-
sume/guarantee style. That is, we would like most of the proof to rely on first-
order properties such as total order or quorum intersection, but then we would
like to produce a concrete implementation, and prove that it satisfies these prop-
erties.

Concrete implementations rely on concrete data types such as integers, and
data structures such as arrays. Ivy includes a built-in library of several concrete
types with their specifications, and allows users to create user defined data types
via a module system. Verification of concrete data type implementations is car-
ried out in decidable theories, most commonly the FAU fragment mentioned ear-
lier. This fragment allows restricted combination of quantifiers and arithmetic,
and is supported by Z3. In [41], well-known modular verification techniques are
applied to separate such theory reasoning, allowing the global protocol verifica-
tion to be done in pure first-order logic (and EPR), while theories are isolated to
particular implementation modules (for example, a module implementing finite
sets with a quorum predicate).

An important tactic in that work is to use modularity to break cycles of func-
tion symbols or quantifier alternations. For example, if verification requires both
a function (or ∀ ∃ quantifier alternation) from sort A to sort B, and a function
from sort B to sort A, then a possible solution is to break the problem into two
modules, where each module can be verified with only one of the functions, thus
avoiding cycles.

A typical approach is to introduce a “ghost” module that formalizes an ab-
stract model of the protocol. The state of the ghost module is usually encoded
using relations, allowing us to verify global properties of the protocol using EPR.
The interface of the ghost module is called in the implementation module at the
“commit points” of abstract operations. Thus, by assume/guarantee reasoning,
we can use the proved properties of the ghost module as lemmas in the proof
the the implementation module. This allows us to use some quantifier alterna-
tions when proving the implementation module, and other quantifier alternations
when proving the abstract protocol module, even though combining them would
create cycles.



Deductive Verification in Decidable Fragments with Ivy 7

Although the approach uses only modular assume/guarantee reasoning in
the proof, this method is still related to approaches based on refinement map-
pings [2]. In this case, an inductive invariant relating the ghost module’s interface
state and the implementation state takes the role of the refinement mapping. Al-
though prophecy variables could in principle be used, this was found in [41] to
be unnecessary in practice, as we have the flexibility to make the ghost module
deterministic.

In [41], these principles are applied to obtain verified implementations of
both Multi-Paxos and Raft [31]. The obtained implementations have perfor-
mance that is on par with other verified and unverified implementations, and
the proof burden is much lower compared to other verified implementations such
as Verdi [42,43] (using Coq) and IronFleet [14] (using Dafny and Z3). Applying
this methodology requires us to carefully consider the functional dependencies
in the system while planning the specification and proofs. This effort was more
than repaid, however, by the predictability, stability and transparency of Z3
when applied to proof goals in the decidable fragments. Overall, restricting the
proof automation to the decidable fragments did not appear to be an insuperable
obstacle and in practice resulted in more concise proofs.

5 Liveness and Temporal Verification

Safety properties can be proven using inductive invariants. However, liveness
properties of infinite-state systems are usually proven using ranking functions or
well-founded relations. Unfortunately, pure first-order logic (without theories)
cannot express the required rankings or the notion of a well-founded relation
or well-ordered set. Therefore, it may seem that liveness verification cannot be
done in pure first-order logic. However, a new technique [33] integrated into Ivy
shows that on the contrary, the formalism of first-order logic provides a unique
opportunity for proving liveness and temporal properties.

The technique exploits the flexibility of representing states as first-order
structures, and uses first-order temporal logic (FO-LTL) (e.g., [23,1]) for tem-
poral specification. This general formalism provides a powerful and natural way
to model temporal properties of infinite-state systems. It naturally supports
both unbounded parallelism, where the system is allowed to dynamically create
processes, and infinite-state per process. Unbounded-parallelism usually requires
infinitely many (or quantified) fairness assumptions (e.g., that every thread is
scheduled infinitely often in a program with dynamic thread creation, where an
infinite trace can have infinitely many threads). This is fully supported by the
formalism and the developed proof technique.

The technique developed in [33] and implemented in Ivy is based on a novel
liveness-to-safety reduction, that reduces temporal verification (expressed in FO-
LTL) to safety verification of an infinite-state system expressed in first-order logic
without temporal operators. This allows us to leverage existing safety verifica-
tion techniques, and the other techniques implemented in Ivy, to verify liveness
and temporal properties. While such a reduction cannot be complete for com-



8 K. L. McMillan and O. Padon

plexity reasons3, it is sound, and it was successful in proving liveness of several
challenging protocols, including the first mechanized liveness proofs of Stoppable
Paxos [21], and the TLB Shootdown algorithm [7].

The liveness-to-safety reduction is based on an abstract notion of acyclic-
ity, using dynamic abstraction. For finite-state systems, liveness can be proven
through acyclicity (the absence of fair cycles). This is the classical liveness-
to-safety reduction of [5]. This also works for parameterized systems, where
the state-space is finite (albeit unbounded) for every system instance [39]. For
infinite-state systems, the acyclicity condition is unsound (an infinite-state sys-
tem can be acyclic but non-terminating). The liveness-to-safety reduction with
dynamic abstraction defines a finite abstraction that is fine-tuned for each exe-
cution trace, while abstracting only the cycle detection aspect (rather than the
actual transitions of the system). Such fine-tuned abstraction is made possible
by exploiting the symbolic representation of the transition relation in first-order
logic, as well as the first-order formulation of the fairness constraints. The full
details are explained in [33].

An additional novel mechanism [34] implemented in Ivy that enhances the
proof power of the liveness-to-safety reduction is temporal prophecy and temporal
witnesses. Here, the idea is to augment the system with additional temporal
formulas that are not part of the specification, and also with additional constant
symbols that are essentially Skolem witnesses for temporal formulas. In addition
to increasing the proof power, temporal witnesses also facilitate verification of the
resulting safety problem using EPR. By introducing a temporal witnesses, one
can often eliminate quantifier alternations in the resulting verification conditions.
The idea is that a temporal witness is used to name a particular element (e.g.,
the thread that is eventually starved), and then the inductive invariant can be
specified for this particular constant, rather than with a quantifier. In several
cases we considered, this allowed to eliminate quantifier alternation cycles. In Ivy,
temporal prophecy formulas are derived from an inductive invariant provided by
the user (for proving the safety property resulting induced by the liveness-to-
safety reduction), which provides a seamless way to prove temporal properties.

6 Additional Topics

6.1 Compositional simulation

As described in Section 2, module specifications in Ivy are stateful monitors.
An additional use for these monitors is to generate tests for the module using
a compositional testing approach [8]. That is, by symbolically executing the
monitor in a given state, we can derive a predicate that represents all of the
legal input values for a given procedure in that state. By sampling randomly
from the satisfying assignment of this predicate, we can generate sequences of a

3 The temporal verification problem in this setting is Π1
1 -complete [1], while safety

verification is in the arithmetical hierarchy.



Deductive Verification in Decidable Fragments with Ivy 9

test inputs. For example, in a client/server protocol, Ivy can take the role of the
client in testing the server, or the server in testing the client.

This modular approach to test generation has several advantages. First, com-
pared to traditional unit testing, it has the advantage that it is in a limited sense
complete. That is, we have a formal assume/guarantee proof that correctness of
the modules implies correctness of the system. This means that if the system
does not actually satisfy its specification, there is some unit test that exposes
this (though this test might be generated with low probability). Compared to
integration testing, the advantage is that it is easier to cover the behaviors of
a module by stimulating its inputs directly rather than the system-level inputs.
This is particularly important in the case of concurrent systems, which suffer
from an explosion of interleavings. Because the module has less concurrency
than the system, its possible interleavings are more easily explored.

In [26], this method is used to verify the hardware building blocks of a mod-
ular cache coherence system for the RISC-V processor architecture, based on
a formal specification of the coherent interface. The approach was able to find
subtle timing bugs in the RTL-level implementations, and also provides a lim-
ited guarantee that, if every block passes all possible tests, then the system as a
whole provides the required memory coherence properties.

Specification-based testing also gives a way to check parts of the “trusted
base” of Ivy, for example the networking interface, which is based on system
services that cannot be formally verified.

6.2 Abstract model checking

Propositional LTL is another example of a decidable logic. Satisfiability prob-
lems in this logic can be reduced to circuit representations in a standard for-
mat [6] that can be checked by highly efficient hardware model checkers such as
ABC [10]. Ivy can exploit such model checkers by means of an abstraction. As
in an SMT solver, the first-order transition relation is reduced to its “proposi-
tional skeleton” by replacing each atomic formula with a free Boolean variable.
Though all of the theory information is lost by this transformation, some can be
regained by a process of “eager instantiation” of the theory axioms. This process
can be controlled by the user by providing a collection of axiom schemata to be
instantiated or by applying standard libraries of such schemata. The user can
also increase precision by adding history and prophecy variables.

In [24] this approach is tested on a collection of distributed protocols. The
ability of the model checker to automatically synthesize part of the system’s
inductive invariant is seen to substantially reduce the complexity of the invariants
that must be provided manually.

6.3 Manual theorem proving

It some cases, it may be necessary to fall back on detailed manual proof. For
this purpose, Ivy provides a collection of proof tactics that can be used to manu-
ally transform proof goals. A standard library provides complete proof rules for



10 K. L. McMillan and O. Padon

first-order logic in the natural deduction style. These can be used where needed
for reasoning about specifications that are outside the decidable fragment, for
example, to apply induction over the natural numbers using the Peano induc-
tion axiom. That is, while Ivy restricts automated proof generation to decidable
fragments, manual proof is not restricted in this way.

7 Conclusion

A key design goal for Ivy is to allow the engineer to apply automated provers
in a realm in which their performance is relatively predictable, stable and trans-
parent. Ivy differs from other program verification tools, such as Dafny and
F*, primarily in that its language and features have been designed based on
the capabilities of a particular automated prover and the needs of a particular
application domain. Ivy’s design allows users to structure specifications, imple-
mentations and proofs to make maximum use of the capabilities of the prover
while avoiding its weaknesses, particularly in the area of heuristic quantifier
instantiation.

Case studies have provided preliminary evidence that such a methodology is
practical, and that the resulting predictability, stability and transparency of the
prover improves overall verification productivity. To some degree, this confirms
the three-part hypothesis of the introduction. In particular, it appears that the
performance of Z3 is substantially more stable within the decidable fragments,
and that, with appropriate language and tool support, the restriction of automa-
tion to the decidable fragment is not unduly burdensome. Still, more experience
is needed to say with certainty that this trade-off is the right one within the
chosen domain and to validate the various design decisions.

Liveness proofs are yet to be integrated with Ivy’s modular assume/guarantee
reasoning. This is needed to verify liveness of system implementations, rather
than abstract protocols. For this, module interfaces may need to be expressed
in temporal logic, such that one module’s liveness property becomes another
module’s fairness assumption. Other important issues have yet to be addressed,
for example the verification of security or privacy properties. In the long run,
the large size of the trusted computing base in Ivy must also be addressed.

Ultimately, the goal of the project is to realize in practice the promise of
greater verification productivity inherent in powerful proof tools such as Z3.

Acknowledgements

We thank the many researchers that have contributed to the research agenda re-
viewed in this article, both as co-authors and via insightful discussions, including:
Thomas Ball, Amir Ben-Amram, Nikolaj Bjørner, Tej Chajed, Constantin Enea,
Yotam M. Y. Feldman, Jochen Hoenicke, Neil Immerman, Shachar Itzhaky,
Ranjit Jhala, K. Rustan M. Leino, Giuliano Losa, Yuri Meshman, Leonardo
de Moura, Alexander Nutz, Aurojit Panda, Bryan Parno, Andreas Podelski,
Shaz Qadeer, Alexander Rabinovich, Mooly Sagiv, Sharon Shoham, Or Tamir,



Deductive Verification in Decidable Fragments with Ivy 11

Zachary Tatlock, Marcelo Taube, James R. Wilcox, Doug Woos, and the anony-
mous referees and artifact evaluation referees of POPL, PLDI, OOPSLA, CAV,
and FMCAD.

Padon was supported by Google under a PhD fellowship and by the Euro-
pean Research Council under the European Union’s Seventh Framework Pro-
gram (FP7/2007–2013) / ERC grant agreement no. [321174-VSSC].

References

1. Abadi, M.: The power of temporal proofs. Theor. Comput. Sci. 65(1), 35–
83 (1989). https://doi.org/10.1016/0304-3975(89)90138-2, https://doi.org/10.

1016/0304-3975(89)90138-2

2. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Com-
put. Sci. 82(2), 253–284 (1991). https://doi.org/10.1016/0304-3975(91)90224-P,
https://doi.org/10.1016/0304-3975(91)90224-P

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 825–885. IOS Press (2009). https://doi.org/10.3233/978-1-58603-929-5-825,
https://doi.org/10.3233/978-1-58603-929-5-825

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer (2004). https://doi.org/10.1007/978-3-662-
07964-5, http://dx.doi.org/10.1007/978-3-662-07964-5

5. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr.
Notes Theor. Comput. Sci. 66(2), 160–177 (2002)

6. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep. 11/2,
Institute for Formal Models and Verification, Johannes Kepler University (July
2011)

7. Black, D.L., Rashid, R.F., Golub, D.B., Hill, C.R.: Translation looka-
side buffer consistency: A software approach. In: Proceedings of the Third
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. pp. 113–122. ASPLOS III, ACM, New York,
NY, USA (1989). https://doi.org/10.1145/70082.68193, http://doi.acm.org/10.
1145/70082.68193

8. Blundell, C., Giannakopoulou, D., Pasareanu, C.S.: Assume-guarantee
testing. ACM SIGSOFT Software Engineering Notes 31(2) (2006).
https://doi.org/10.1145/1118537.1123060, http://doi.acm.org/10.1145/

1118537.1123060

9. Boyer, R., Moore, J.: A Computational Logic. Academic Press, New York (1979)

10. Brayton, R.K., Mishchenko, A.: ABC: an academic industrial-strength verifica-
tion tool. In: Touili, T., Cook, B., Jackson, P.B. (eds.) Computer Aided Verifica-
tion, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6174, pp. 24–40. Springer
(2010). https://doi.org/10.1007/978-3-642-14295-6 5, https://doi.org/10.1007/
978-3-642-14295-6_5

11. Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: Using verification
to disentangle secure-enclave hardware from software. In: Proceedings of the 26th

https://doi.org/10.1016/0304-3975(89)90138-2
https://doi.org/10.1016/0304-3975(89)90138-2
https://doi.org/10.1016/0304-3975(89)90138-2
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1145/70082.68193
http://doi.acm.org/10.1145/70082.68193
http://doi.acm.org/10.1145/70082.68193
https://doi.org/10.1145/1118537.1123060
http://doi.acm.org/10.1145/1118537.1123060
http://doi.acm.org/10.1145/1118537.1123060
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5


12 K. L. McMillan and O. Padon

Symposium on Operating Systems Principles, Shanghai, China, October 28-31,
2017. pp. 287–305 (2017)

12. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for java. In: Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation. pp. 234–245.
PLDI ’02, ACM (2002). https://doi.org/10.1145/512529.512558, http://doi.acm.
org/10.1145/512529.512558

13. Ge, Y., Moura, L.D.: Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In: International Conference on Computer Aided Verification. pp.
306–320. Springer (2009)

14. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: Ironfleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP. pp.
1–17 (2015)

15. Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe,
T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma, E.,
Cleaveland, R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) Tools and Algorithms
for Construction and Analysis of Systems, First International Workshop, TACAS
’95, Aarhus, Denmark, May 19-20, 1995, Proceedings. Lecture Notes in Computer
Science, vol. 1019, pp. 89–110. Springer (1995). https://doi.org/10.1007/3-540-
60630-0 5, https://doi.org/10.1007/3-540-60630-0_5

16. Itzhaky, S.: Automatic Reasoning for Pointer Programs Using Decidable Logics.
Ph.D. thesis, Tel Aviv University (2014)

17. Itzhaky, S., Banerjee, A., Immerman, N., Lahav, O., Nanevski, A., Sagiv, M.:
Modular reasoning about heap paths via effectively propositional formulas. In: the
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL. pp. 385–396 (2014)

18. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: CAV.
LNCS, vol. 8044, pp. 756–772 (2013)

19. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2),
133–169 (1998). https://doi.org/10.1145/279227.279229, http://doi.acm.org/

10.1145/279227.279229

20. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 51–58
(December 2001), https://www.microsoft.com/en-us/research/publication/

paxos-made-simple/

21. Lamport, L., Malkhi, D., Zhou, L.: Stoppable paxos. Tech. rep., TechRe-
port, Microsoft Research (2008), https://www.microsoft.com/en-us/research/
publication/stoppable-paxos/

22. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Logic for Programming, Artificial Intelligence, and Reasoning. pp. 348–370.
Springer (2010)

23. Manna, Z., Pnueli, A.: Verification of concurrent programs: A temporal proof sys-
tem. In: de Bakker, J.W., van Leeuwen, J. (eds.) Foundations of Computer Science:
Distributed Systems, pp. 163–255. Mathematisch Centrum, Amsterdam (1983)

24. McMillan, K.L.: Eager abstraction for symbolic model checking. In: Conference on
Computer-Aided Verification (CAV 2018). Springer (2018), to appear

25. McMillan, K.L.: Ivy. http://microsoft.github.io/ivy/, accessed: 2018-07-05
26. McMillan, K.L.: Modular specification and verification of a cache-coherent inter-

face. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Methods in Computer-Aided

https://doi.org/10.1145/512529.512558
http://doi.acm.org/10.1145/512529.512558
http://doi.acm.org/10.1145/512529.512558
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/stoppable-paxos/
https://www.microsoft.com/en-us/research/publication/stoppable-paxos/
http://microsoft.github.io/ivy/


Deductive Verification in Decidable Fragments with Ivy 13

Design, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016. pp. 109–116.
IEEE (2016). https://doi.org/10.1109/FMCAD.2016.7886668, https://doi.org/
10.1109/FMCAD.2016.7886668

27. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008)

28. Nelson, C.G.: Techniques for Program Verification. Ph.D. thesis, Stanford, CA,
USA (1980), aAI8011683

29. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

30. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer-Verlag, Berlin, Heidelberg (2002)

31. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algorithm.
In: 2014 USENIX Annual Technical Conference, USENIX ATC ’14, Philadel-
phia, PA, USA, June 19-20, 2014. pp. 305–319 (2014), https://www.usenix.org/
conference/atc14/technical-sessions/presentation/ongaro

32. Padon, O.: Deductive Verification of Distributed Protocols in First-Order Logic.
Ph.D. thesis, Tel Aviv University (2018)

33. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reduc-
ing liveness to safety in first-order logic. PACMPL 2(POPL), 26:1–26:33 (2018).
https://doi.org/10.1145/3158114, http://doi.acm.org/10.1145/3158114

34. Padon, O., Hoenicke, J., McMillan, K.L., Podelski, A., Sagiv, M., Shoham, S.:
Temporal prophecy for proving temporal properties of infinite-state systems, in
preparation

35. Padon, O., Immerman, N., Shoham, S., Karbyshev, A., Sagiv, M.: Decid-
ability of inferring inductive invariants. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 217–231
(2016). https://doi.org/10.1145/2837614.2837640, http://doi.acm.org/10.1145/
2837614.2837640

36. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made epr: Decidable rea-
soning about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA),
108:1–108:31 (Oct 2017). https://doi.org/10.1145/3140568, http://doi.acm.org/
10.1145/3140568

37. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning
about distributed protocols. CoRR abs/1710.07191 (2017), http://arxiv.org/
abs/1710.07191

38. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifi-
cation by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016,
Santa Barbara, CA, USA, June 13-17, 2016. pp. 614–630 (2016)

39. Pnueli, A., Shahar, E.: Liveness and acceleration in parameterized verification. In:
CAV. Lecture Notes in Computer Science, vol. 1855, pp. 328–343. Springer (2000)

40. Swamy, N., Chen, J., Fournet, C., Strub, P., Bhargavan, K., Yang, J.: Secure
distributed programming with value-dependent types. J. Funct. Program. 4(23),
402–451 (2013)

41. Taube, M., Losa, G., McMillan, K.L., Padon, O., Sagiv, M., Shoham, S., Wilcox,
J.R., Woos, D.: Modularity for decidability of deductive verification with applica-
tions to distributed systems. In: Foster, J.S., Grossman, D. (eds.) Proceedings of

https://doi.org/10.1109/FMCAD.2016.7886668
https://doi.org/10.1109/FMCAD.2016.7886668
https://doi.org/10.1109/FMCAD.2016.7886668
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/3158114
http://doi.acm.org/10.1145/3158114
https://doi.org/10.1145/2837614.2837640
http://doi.acm.org/10.1145/2837614.2837640
http://doi.acm.org/10.1145/2837614.2837640
https://doi.org/10.1145/3140568
http://doi.acm.org/10.1145/3140568
http://doi.acm.org/10.1145/3140568
http://arxiv.org/abs/1710.07191
http://arxiv.org/abs/1710.07191


14 K. L. McMillan and O. Padon

the 39th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. pp. 662–677.
ACM (2018). https://doi.org/10.1145/3192366.3192414, http://doi.acm.org/10.
1145/3192366.3192414

42. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.E.: Verdi: a framework for implementing and formally verifying distributed
systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015. pp.
357–368 (2015)

43. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.:
Planning for change in a formal verification of the raft consensus protocol. In:
Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Con-
ference on Certified Programs and Proofs, Saint Petersburg, FL, USA, January
20-22, 2016. pp. 154–165. ACM (2016). https://doi.org/10.1145/2854065.2854081,
http://doi.acm.org/10.1145/2854065.2854081

https://doi.org/10.1145/3192366.3192414
http://doi.acm.org/10.1145/3192366.3192414
http://doi.acm.org/10.1145/3192366.3192414
https://doi.org/10.1145/2854065.2854081
http://doi.acm.org/10.1145/2854065.2854081

	Deductive Verification in Decidable Fragments with Ivy

