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The success of model checking for large programs depends cru-

cially on the ability to efficiently construct parsimonious abstrac- General Terms: Languages, Verification, Reliability.

tions. A predicate abstraction is parsimonious if at each control

location, it specifies only relationships betweanrent values of ) . . .

variables, and only those which are required for proving correct- Keywords: Software model checking, predicate abstraction, coun-

ness. Previous methods for automatically refining predicate ab- terexample analysis.

stractions until sufficient precision is obtained do not systemati-

cally construct parsimonious abstractions: predicates usually con- .

tain symbolic variables, and are added heuristically and often uni- 1 Introduction

formly to many or all control locations at once. We use Craig inter- . .

polation to efficiently construct, from a given abstract error trace Increasing dependency on software systems amplifies the need for

which cannot be concretized, a parsominous abstraction that re-technigues that can analyze such systems for errors and prove them

moves the trace. At each location of the trace, we infer the relevant Safe. The two most desirable features of such analyses is that they

predicates as an interpolant between the two formulas that defineP€ Preciseandscalable Precision is required so that the analy-

the past and the future segment of the trace. Each interpolant isSiS does not report errors where none exist, nor assert correctness

a relationship between current values of program variables, and isWhen there are bugs. Scalability is necessary so that the method

relevant only at that particular program location. It can be found by Works for large software systems, where the need for analysis is

a linear scan of the proof of infeasibility of the trace. most a_cute. These two features are often mutually exc_:l_uswe: _fl_ow
based interprocedural analyses [11, 15] achieve scalability by fixing

We develop our method for programs with arithmetic and pointer & Small domain of dataflow facts to be tracked, and compute flow

expressions, and call-by-value function calls. For function calls, functions over the abstract semantics of the program on this fixed

Craig interpolation offers a systematic way of generating relevant Set. For complicated properties, if the set of facts that are tracked is

predicates that contain only the local variables of the function and 00 small, many false positives are reported. Model checking based

the values of the formal parameters when the function was called. @PProaches [25] on the other hand offer the promise of precision as

We have extended our model checkaraBT with predicate dis- they are path-sensitive, but they often track too many facts, so state

covery by Craig interpolation, and applied it successfully to C pro- €xPlosion comes in the way of scalability.

grams with more than 130,000 lines of code, which was not possible ) ) o ) )

with approaches that build less parsimonious abstractions. To av_0|d the pitfalls arising fr(_)m using a fixed set of facts, much re- _

cent interest has focused on interprocedural analyses that automati-

cally tune the precision of the analysis using false positivesjn

acounterexample-guidedanner. These start with some coarse ab-

stract domain and successively refine the domain by adding facts
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We solve both problems using the following observation: réee tion refinement. We have implemented the method in8r [19].
sonwhy an abstract trace is infeasible is succinctly encoded in a Owing to the fact that we only track a few predicates at every pro-
proofthat the trace is infeasible, and so the appropriate abstractiongram location, we have been able to precisely model check pro-
can be culled from the proof. The difficulty in extracting the rele- grams considerably larger than have been reported before [7, 17],
vant facts from the proof is that the proof uses the entire history of including a driver that consists of 138,000 lines of C code (we found
the trace, while our analysis, and hence our facts, should refer at allseveral behaviors that violate the specification). Even though 382
points of the trace only to relationships between the “current” val- predicates are required in total to show correctness, the reason the
ues of program variables. Inspired by the use of Craig Interpolation analysis scales is that the average number of relevant predicates at
for image-computation in [22], we introduce a method by which the each program location is about 8.

proof can be sliced to yield the relevant facts at each point of the
trace. Given an abstract trace, we construghae formula(TF),
which is the conjunction of several constraints, one per instruction,
such that the TF is satisfiable iff the trace is feasible. If the trace
is infeasible, then we use Craig’s interpolation theorem [9] to ex-
tract, for each point of the trace, the relevant facts from the proof of
unsatisfiability of the TF. Given two formulas™ and$™, whose
conjunction is unsatisfiable, ti@raig interpolantof (¢—,¢™) is a
formulay such that (i}p~ impliesy, (i) YA 6T is unsatisfiable,
and (iii) @ contains only symbols common o~ and¢™. If ¢~ is )
the part of the TF that represents a prefix of an infeasible trace, and _ While(){ . .
o+ encodes the remainder of the trace, then the Craig interpolant if (p1) lock (); assume pl;

2 Overview

Consider the program fragment shown in Figure 1. The property we
wish to check is that locking and unlocking alternate,, between
any two calls oflock there must be a call afnlock, and between
any two calls ofunlock there must be a call afock. Suppose that
the code not shown does not contain any callsaafk or unlock.

Y consists of precisely the facts, as relations between current val- fffpl) unlock () ;Zzt& - pl;

ues of the variables, which need to be known at the cut-point of the 5. if (p2) lock (): assume p2; ’

trace in order to prove infeasibility. if (p2) unlock (); lock ();

In this paper, we make the following contributions. First, we show n: if (pn) lock ();

how a proof of unsatisfiability o~ A+ can be mined to build if (pn) unlock ();

the interpolantp. The method is efficient in that it uses the same . .

theorem proving effort as is needed to produce a proof of unsatisfia- Figure 1. Program; spurious counterexample.

bility: the interpolant is generated by a linear scan of the proof. Sec-
ond, we show how to infer from the interpolants, at each cut-point
of an infeasible abstract trace, enough facts to rule out the trace.A static analysis that tracks whether or not the lock is held returns
Moreover, the cut-points provide precise information at which pro- false positivesj.e., error traces that arise from the imprecision of
gram locations the inferred facts are useful, thus enabling a parsi-the analysis. One such spurious error trace is shown on the right
monious use of predicates. The method can be combined with on-in Figure 1. The analysis is fooled because it does not track the
the-fly lazy abstraction [19], and presents an improvement: while predicatepl which correlates the first twof statements; either
in pure lazy abstraction, the set of predicates increases monotoni-both happen or neither happens, and either way the error cannot be
cally along a trace, the interpolant predicates may change from onereached. We would like to make the analysis more precise so that
control location to the next,e., interpolation provides a procedure  this spurious counterexample is eliminated, and we would like to
for deciding when a predicate becomes irrelevant, and therefore ob-keep refining the analysis until we either have a real counterexam-
solete. We show that the method is both sound and complete, in theple, or, as in this case, the program is proved safe.
sense that if an abstract trace is infeasible, then the interpolants al-
ways provide sufficient information for proving infeasibility. More-  Various methods can analyze this particular counterexample and
over, when abstractions are used as certificates for program cor-learn that the analysis should track the valugdf Similar coun-
rectness following the proof-carrying code paradigm [17], then our terexamples show that all of the predicatek ..., pn must be
parsimonious use of predicates yields more compact proofs. tracked, but as a result, the analysis blows up, because it is not clear
when we can “merge” states with different predicate values, and
We illustrate the method on an imperative language of arithmetic without merging there are an exponential number of statéstice
and pointer expressions with call-by-value function calls. There are however that in this program, each predicate is only locally useful,
two orthogonal sources of complexity in generating interpolants. i.e., eachpi is “live” only at the statements between labeland
The first is function calls and scoping. We want the analysis of a (not including)i + 1. Hence, to make preciseanalysisscalable
function to be polymorphic in all callerse., the inferred predicates ~ we need a method that infers both the predicatesvdratethey are
should involve only Ivalues that are local to the scope of the func- useful. In our experience, many large software systems have the
tion. Here, interpolation provides a procedure for systematically property that, while the number of relevant predicates grows with
discovering predicates that refer only to (i) the local variables of the size of the system, each predicate is useful only in a small part
the function and (i) the values of the formal parameters at the time of the state spacége.,the number of predicates that are relevant at
of the function call. This allows us to keep the subsequent anal- any particular program location is small. By exploiting this prop-
ysis interprocedural [1, 29]. The second issue is the presence oferty one can make a precise analysis scale to large programs. In
pointers and aliasing. We want to generate predicates that soundlyparticular, our algorithm infers the predicatpsand also thapi
and completely capture the semantics of programs with pointersis useful only between the labelgndi + 1; outside these labels,
and memory allocation. As McCarthy’s theory of arrays [21] does we can forget the value gfi. Thus our analysis considers, in this
not offer suitable interpolants, we need to model memory locations example, only a linear number of distinct states.
individually.

1For this particular example certain state representation methods
Finally we report on our experiences with this new kind of abstrac- such as BDDs would implicitly merge the states.



;f )ét:r:.ftgtr i1 gﬁirl>1>:—<c(tcr:i?>o> 1 . gg ) per instruction in the trace. In Figure 2, the constraint for each in-
3 y::' ctr; ' ly. 2’> = (ctr 1’> x=y—1 struction is shoyvn on the r|gh§ of the instruction. Each térm _
4:  assume(x=m); (1) = (m,0) y=m+1 denotes a special constant which represents the value of some vari-
5. assume(y#m+1); (%2)=(mO0)+1 able at some point in the traceg., (ctr, 1) represents the value of
Figure 2. Infeasible trace; constraints; predicates. ctr after the first two instructions. The constraints are essentially

the strongest postconditions, where we give new names to variables
upon assignment [10, 14]. Thus, for the assignment in line 1, we

The problem, then, is (i) to prove that an abstract trace is infeasible, 9enerate the constraift, 1) = (ctr,0), where(x, 1) is a new name

i.e., it does not correspond to a concrete program trace, and (ii) to for the value ofx after the assignment, ar{dtr, 0) is the name for
extract predicates from the proof, together with (iii) information ~Ctr at that point. Notice that the “latest” name of a variable is used
where to use each predicate, such that the refined abstraction ngvhen the variable appears in an expression on the right. Also note
longer contains the infeasible trace. This is not always as simple that the conjunctio of all constraints is unsatisfiable.

as in the locking example; consider the infeasible trace shown in

Figure 2, where, y, ctr, andi are program variables=:denotesan 10 compute the seP of relevant predicates, we could simply
assignment, andssume represents ant statement. take all atomic predicates that occur in the constraints, rename the

constants to corresponding program variables, create new names
(“symbolic variables”) for “old” values of a variable.g., for

ctr,1) = (ctr,0) + 1 create a new name that denotes the value of
tr at the previous instruction, and add these names as new vari-
ables to the program. However, such aR& often too large, and
in practice [3, 19] one must use heuristics to minimize the sets of
predicates and symbolic variables by using a minimally infeasible
subset of the constraints.

Preliminary definitions. Suppose that the formuéa(over the pro-
gram variables) describes a set of program states, namely, the state
in which the values of the variables satigfy The strongest post-
condition[16] of ¢ w.r.t. an operatiowp is a formula that describes

the set of states reachable from some stat ly performing the
operatiorop. For an assignmer§P.¢.(x:=e) is (IX.¢p[X' /] AX=
eX'/x]), and for anassume we have SP.¢.(assume p) = (¢ A p).

For example(x = ctr) describes the set of states where the value of

x equals that otr, andSP.(x = ctr).(ctr ;= ctr+1) = (Jctr' x = Craig interpolation. Given a pair(¢—,¢™) of formulas, anin-

ctr’ Actr = ctr’ +1). The operatoiSP is extended to sequences terpolantfor (¢—,¢*) is a formulay such that (i}p~ implies Y,

of operations bySP.¢.(t1;t2) = SP.(SP.¢.t1).to. A tracet is (i) WA T is unsatisfiable, and (jii) the variables @fare common
feasibleif SP.true.t is satisfiable. Given a s&? of predicates to both¢~ ando™. If $~ AT is unsatisfiable, then an interpolant
and a formulad, the predicate abstractiorof ¢ w.r.t. P, writ- always exists [9], and can be computed from a proof of unsatisfia-
ten a.P.¢ is the strongest formuld (in the implication order- bility of $~ A¢™. We present an algorithm for extracting an inter-
ing) such that (i) is a boolean combination of predicatesFn polant from an unsatisfiability proof in Section 3;#fis a proof of
and (ii) ¢ implies §. For example, ifP = {a=0,b > 0}, then unsatisfiability ofp~ A ¢, then we write TP.(¢—,¢™).(P) for the
a.P(a=b+cAb=2Ac>0)is ~(a=0)A(b>0). Theab- extracted interpolant fofd—, ¢ ™).

stract strongest postconditiaf ¢ w.r.t. the operatiowp and pred-
icatesP is SPp.¢.op = 0.P.(SP.¢.op). This is extended to traces  In our example, suppose thatis a proof of unsatisfiability for the
by SPp.¢.(t1;t2) = SPp.(SPp.¢.t1).to. A tracet is abstractly fea- TF ¢. Now consider the partition af into ¢, , the conjunction of
siblew.r.t. P if SPp.true.t is satisfiable. The problem is, given an the first two constraints(x, 1) = (ctr,0) A {ctr,1) = (ctr,0) + 1),
infeasible trace, find a setP of predicates such thatis abstractly and ¢§r, the conjunction of the last three constrainty,2) =
infeasible w.r.tP. (ctr, 1) A (x,1) = (M,0) A (y,2) = (m,0) + 1). The symbols com-
mon to¢, andq);r are(x,1) and({ctr,1); they denote, respectively,
Symbolic simulation. One way to solve this problem is to symbol- the values of andctr after the first two operations of the trace.
ically simulate the trace until an inconsistent state is reached; suchThe interpolant TP.(¢5 ,¢5).(?) is Y2 = ((x,1) = (ctr,1) — 1).
inconsistencies can be detected by decision procedures [6]. A de-Let (J; be the formula obtained fromi, by replacing each constant
pendency analysis can be used to compute which events in the tracavith the corresponding program variables., §i, = (x = ctr — 1).
cause the inconsistency, and this set of events can then be heuristiSince, is an interpolantg, implies Y, and sox =ctr — 1 is
cally minimized to obtain a suitable set of predicates [3, 7]. There an overapproximation of the set of states that are reachable after
are two problems with this approach. First, the inconsistency may the first two instructions (as the common constants denote the val-
depend upon “old” values of program variablesy.,in the trace ues of the variables after the first two instructions). Moreover, by
shown, such an analysis would use facts klegjuals “the value of virtue of being an interpolar‘mz/\q); is unsatisfiable, meaning that
ctr at line 1,” and that the “current” value atr is one more than from no state satisfyingp, can one execute the remaining three
the “value at line 1.” In general there may be many such old val- instructions,i.e., the suffix of the trace is infeasible for all states
ues, and not only must one use heuristics to deduce which ones towith x = ctr — 1. If we partition the TR in this way at each point
keep, a problem complicated by the presence of pointers and proce+ = 1,...,4 of the trace, then we obtain from four interpolants
dures, but one must also modify the program appropriately in order (; = |Tp,(¢i—,¢i+),(gp), whered;” is the conjunction of the first
to explicitly name these old values. Intuitively, however, since the j constraints ofp, and¢;" is the conjunction of the remaining con-
program itself does not remember “old” values of variables, and yet straints. Upon renaming the constants, we arrive at the formjylas
cannot follow the path, it must be possible to track relationships be- \which are shown in the rightmost column of Figure 2. We collect

tween “live” values of variables only, and still show infeasibility.  the atomic predicates that occur in the formulgsfori =1,..., 4,
Second, this approach yields no information abeberea predi- in the setP of predicates.

cate is useful.

We can prove that the trace is abstractly infeasible vPr.t.In-
Example. We now demonstrate our technique on the trace of Fig- tuitively, for each pointi = 1,...,4 of the trace, the formuld);

ure 2. First, we build @race formula(TF) which is satisfiable iff represents an overapproximation of the statsch thasis reach-
the trace is feasible. The Tg-is a conjunction of constraints, one  able after the first instructions of the trace, and the remaining in-



structions are infeasible from From Equation 1 of Section 3, it

follows thatSP.({;i).opj, 1 implies {11, for eachi. For example, H\rpﬁ(p per
SP.(x=ctr—1).(y:=ctr) impliesx =y — 1. Therefore, by adding

all predicates from allp; to P, we haveSPp.true.(opy;...;op;j)

implies(j. Note that, as the trace is infeasibig; = Y5 = false. FrM-0<xT-o0<y
Thus,SPp.true.(op;;...;ops) impliesfalse, i.e.,the trace is ab- CoOMB—F < et oy 2”7 0
stractly infeasible w.r.tP.

{Qu...n}FO<c

=g, g 0

Locality. The interpolants give us even more information. Con- CONTRA
sider the naive method of looking at just the TF. The predicates we
get from it are such that we must track all of them all the time.

If, for example, after the third instruction, we forget tha¢quals

the “old” value ofctr, then the subsequeatsume does not tell

us thaty = m+ 1 (dropping the fact about breaks a long chain Figure 3. Proof system.

of reasoning), thus making the trace abstractly feasible. In this

example, heuristic minimization cannot rule out any predicates,

so all predicates that occur in the proof of unsatisfiability of the We use a theorem prover that generates refutations for sets of
TF must be used at all points in the trace. Using the interpolant clauses using the sequent proof system of Figure 3. In particular, all

< THouo r+{-gue

RE Froue

method, we show that for infeasible traces of lengtithe for- boolean reasoning is done by resolution. This system is complete
mulaSPyg, .(...(SPg, true.op;)).op, is unsatisfiable (see Theo- for refutation of clause systems over the rationals. We obtain an
rem 1 for a precise statement of this). Thus, at each pamthe incomplete system for the integt_ers by sy_stematically translating the
trace, we need only to track the predicatedijnFor example, after  literal =(0 < x) to 0< —1—x, which is valid for the integers.

executing the first instruction, all we need to knowis ctr, after

the second, all we need to knowxs= ctr — 1, after the third, all we We will use the notatiomp < p to indicate that all variables occur-
need to know i =y— 1, and so on. This gives us away to localize ring in @ also occur inp. An interpolated sequerit of the form
predicate usage. Thus, instead of a monolithic set of predicates all($—,¢™) - A [y], where¢p~ and¢™ are sets of clauses, is a set
of which are relevant at all points of a trace, we can deduce a small of formulas, andp is a formula. This encodes the following three
set of predicates for each point of the trace. facts:

Do Y, Q@u,oTFAand B =<oTUA.
Function calls. The method described above can be generalized to We~re. @uw.e Ew=e

systematically infer well-scoped predicates for an interprocedural Note that if(¢—,¢™) =L [Y], theny is an interpolant fotdp—,¢ ™).
analysis [29]. To obtain predicates that contain only locally visi- We now give a system of derivation rules for interpolated sequents
ble variables, we cut the TF at each pdiim a different way. The corresponding to the rules of our proof system. These rules are a
first part¢— of a formula pair consists of the constraints from the distillation of methods found in [20, 28]. They are sound, in the
instructions between and includingandi, wherei| is the first in- sense that they derive only valid interpolated sequents, and also
struction of the call body to whichbelongs. The second papt complete relative to our proof system, in the sense that we can trans-
contains all remaining constraints. It can be shown that interpolants late the derivation of any sequepit U™ I~ A into the derivation

for such pairg¢—,4) contain only variables that are in scope at of an interpolated sequefd—, o) - AlY].

the pointi, and are sufficient to rule out the false positive when the

subsequent static analysis is done in an interprocedural, polymor-We begin with the rule for introduction of hypotheses. Here, we dis-

phic way [1]. tinguish two cases, depending on whether the hypothesis isifrom
oroT:

Paper outline. Next, we describe how to extract interpolants from

proofs. In Section 4 we describe the syntax and semantics of our Hyp-A CREBEC) e

language. In Section 5 we show how the predicate inference al- ’ e

gorithm works for programs without pointers, and in Section 6 we B
discuss how pointers can be handled. Finally, in Section 7 we report Hyp-B 0 Fo[T] PZ0
on our experimental results. -

We takeT here to be an abbreviation for<00. The rule for in-
equalities is as follows:

3 Interpolants from Proofs

: : (4. 0")FO<x[0<X]
We now present rules that, given a refutation of a fornguta\ ¢+ CoMmB ¢, 0t )FOo<y[0<Y] C12>0
in cnf, derives an interpolanp for the pair(¢—,¢"). Let FOL @ .0)Fo< ClXJrC_zy [0<_clx’+cz3/] ’
be the set of formulas in the first-order logic of linear equality. ’ - -
A term in the logic is a linear combinatioty + c1x + - - - CnXn, In effect, to obtain the interpolant for a linear combination of in-

wherexy,...,X, are individual variables anc, . ..,cy are integer equalities fromp~ and¢ " we just replace the inequalities fraprt

constants. An atomic predicate is either a propositional variable or with 0 < 0. Interpolated sequents derived using these rules satisfy
an inequality of the form & x, wherex is a term. A literal is ei- the following invariant.

ther an atomic predicate or its negation. A clause is a disjunction of

literals. Here we consider formulas in the quantifier-free fragment INVARIANT 1. For any interpolated sequent of the form
of FOL. A sequent is of the forrfi I- A, wherel™ andA are sets of (¢~,0T)F0<x[0<X], we havad™ -0 <y suchthatx=x +Y'.
formulas. The interpretation &f - A is that the conjunction of the Further, for all individual variables v such that ¢, the coeffi-
formulas inl" entails the disjunction of the formulasin cients of v in x and’xare equal.



From this, we can show that the above rules are sound. We can also give interpolation rules for treating equalities and un-
interpreted functions. This is omitted here due to space considera-
As an example, Figure 4 shows the derivation of an interpolant for tions. We also note that some useful theories do not have the Craig

the case wher@™ is (0<y—x)(0<z—y)andd™ is (0 <x—z—1). interpolation property. For example, interpolants do not always ex-
In the figure, we abbreviat@~, ") - @[] to - @ [g]. Using the ist in the quantifier-free theory of arrays (wigkel andupd opera-
above rules, we derive the sequeénd < —1 [0 < z—x]. Since tors) [21]. For this reason, we avoid arrays in this work, although

0< —1isequivalent tal, it follows that 0< z— x is an interpolant the use of array operators would simplify the theory somewhat.
for (¢, 0™) (which the reader may wish to confirm).
Inequality reasoning is connected to Boolean reasoning in our sys-4 Languages and Abstractions

tem via the @NTRA rule. The corresponding interpolation rule is . . . . .
P 9 P We illustrate our algorithm on a small imperative language with

as follows: integer variables, references, and functions with call-by-value pa-
ap,... by,...,bm}) FL rameter passing.
CONTRA (E l7+ 7ak}7{ 1, ) m}) [w] p g
(q) ?¢ )'__‘a17"'7_‘ak7_‘bla~-~a_‘bm . . . . .
[(mag V- V-a) VY Syntax. We consider a language with integer variables and point-

ers. Lvalues (memory locations) in the language are declared vari-
This rule is sound because both the consequent and the interpolanables or dereferences of pointer-typed expressions. We assume
it generates are tautologies. Moreover, we apply the side condition for simplicity that at the beginning of a function, memory is allo-

that all theb; are literals occurring ip ™, while all thea; are literals cated for each reference variable. Arithmetic comparison or pointer
not occurring inp ™. This establishes the following invariant. equality constitute boolean expressions. For any Ivhllet typ.|

. be the type of; typ.x is the declared type of the variabtdn the
INVARIANT 2. For any interpolated sequerity~,¢™) - © [y, current scope, angp. xl1 is Tif typ.l1 is ref T (and there is a type
the se© is a collection of literals, andp is of the formpv p, where error otherwise). The operatibn= ewrites the value of the expres-
@is the disjunction of those literals i@ not occurring ing . sionein the memory locatioh; the operatiorassume(p) succeeds

if the boolean expressiop evaluates tatrue, the program halts
otherwise. An operatiofi(xy,...,%n) corresponds to a call to func-
tion f with actual parameteng to X,, andreturn corresponds to
a return to the caller. We assume that all operations are type safe.

Notice that, providea ~ is in clause form, our two hypothesis in-
troduction rules KP-A and Hyp-B also establish this invariant
(any clause frond~— can be rewritten into the formpV p required
by the invariant).

We represent each functiohas acontrol flow automaton (CFA)

Ci = (Lf,Ef,I?,Opf,Vf). The CFAC; is a rooted, directed graph
with a set of vertices  C PC which correspond to program loca-
tions, a set of edgess C Lt x L¢, a special start Iocatiok? € Lg,

Now, we introduce two interpolation rules for resolution: one for
resolution on a literal occurring g™, and the other for resolution
on a literal not occurring ip™:

4 ,0M) Fe0[(evp) VY] a labeling functiorOp;s: Er — Opsthat yields the operation label-
- (6,01 F=0,0 [(-~evp) VY] ingt\;aacpl edgle, a_ncti)la sr?t of typE(;élf?ga\I/varfi?MeglLvals T?e
=~ o - 7 7 7 setVs of local variables has a su C V¢ of formal parameters
(6767 O,&lpve)VWVY) passed tdf on a call, and a variables € V; that stores the return
0 0 FeO VY (07,07 F -0 [p' VY] value. Aprogramis a set of CFA® = {Cj,...,Cy, }, where each

RES-B

Cy, is the CFA for a functionfi. There is a special functiafiain
and corresponding CF&.in, and the program execution begins
there.

4,07 F0,0 [(pve) vV (WAY))

In effect, when resolving a literal on tlfe” side (not occurring in

¢ ™) we take the disjunction of the interpolants, and when resolving
a literal on thep™ side (occurring inp™) we take the conjunction

of the interpolants. Using Invariant 2 we can show that these rules
are sound.

Let PC=U{L+ | C; € P} be the set of program locations. odm-
mandis a pair(op, pc) € Opsx PC. A traceof P is a sequence of
commandgopy : pc;);...; (opn : PG,), where (1) there is an edge
(19.;.,,PC1) in Cpain such thatop(12,; . pci) = opy, (2) if op; is
As an example, Figure 5 shows a derivation of an interpolant for & function callf(---), thenpg is 1%, the initial location of func-

(6~,9™), wheredp~ is (b)(—=bV c) and¢™ is (—c). Using the res- tion f, (3) the function calls and returns are properly matched, so
olution rule, we derive the sequefi—,¢™) -_L [c]. Thuscis an if op; is areturn, thenpg is the control location immediately af-
interpolant for(¢—,¢™). ter the call in the appropriate caller, (4) otherwised( is not

a function call or return), there is an ed@eg_4,pG) € Ef such

Using the invariants given above, we can also show that for every thatOp(pG_1,pG) = op; (wheref is the CFA such thapg € Ls).
derivation? of a sequentd—, ™) - @in our original proof system, For a tracet = (opy : p¢p);-.-;(opn : PG,), let Clt be a function
there is a corresponding derivatid of an interpolated sequent of ~ such that ifop is a function call, therpg,;; is the matching re-
the form(¢—,¢™) - @ [W]. We will refer to the interpolan thus turn, andCl.t.i = n otherwise. For each £ i < n, defineL.t.i to
derived asTp.(¢~,¢").(P). Using the same proof but partitioning  be max{j | j <i, andop; is a function call, ancl.t.j > i}, and O
the antecedent differently, we can obtain related interpolants. For if this set is empty, andRt.i = Cl.t.(L.t.i). For a trace = (opy :
example, we can show the following fact: pcy);...;(opp : PG), and 1< i < n, the positionL.t.i has the call

_ + _ + that begins the scope to whielp; belongs, andRt.i has the return

ITP.(67,0U¢T).(P) NG = ITP.(" UG.07).(7) (1) that ends that scope. For simplicity of notation, we assume that

This fact will be useful later in showing that a set of interpolants every function call returns.
derived from an infeasible program trace provides a sufficient set of
predicates to rule out that trace. We fix the following notation for the sequel. We usfor the trace
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Figure 4. Deriving an interpolant.
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Figure 5. Deriving an interpolant using resolution.

(op1:pPCy);-..;(opn: PGy). For formulasp, @1, @ € FOL, we write
ite..1.@p to abbreviatd A @) V (-QA @).

(but not pointer-free), and (ClagdV) the class of all programs.
For each class, we define a syntactic predicate transfdsménat

takes a formul# € FOL and an operationp € Opsand returns the
Semantics.The semantics of a program is defined over thevsit strongest postconditioBP.¢.op. We also define the predicate ab-

states. The state of a program contains valuations to all Ivalues, theStractionSP of SP. Finally, we present an algorithBxtract that
value of the program counter, as well as the call stack. For our pur- t2kes a trace and returns a mapping from PC to sets of atomic

poses, we only consider tlata state which is a type-preserving
function from all Ivalues to values. fegionis a set of data states.
We represent regions using first-order formulas with free variables
from the set of program variables. Each operatipne Opsde-
fines a state transition relatiof» C v x vin a standard way [23].
The semantics of a trace can also be given in terms ddttbagest
postconditioroperator [16]. Leth be a formula inFOL represent-

ing a region. The strongest postconditiondofv.r.t. an operation

op, written SP.¢.op is the set of states reachable from state¢ in
after executingop. The strongest postcondition operator for our
language can be computed syntactically as a predicate transformer

predicates ifFOL. The following theorem relates the different no-
tions of feasibility.

THEOREM 1. Lett be a trace of a program P of clags, PlI, Plll,
or PIV. The following are equivalent:

1. tisinfeasible (or equivalently, t BP-infeasible).

2. tisSPp-infeasible forl1 = Extract.t.

The strongest postcondition operator gives the concrete semantics

of the program. Our analyses will consider abstract semantics of
programs. The abstract domain will be defined by a set of predicates
over the program variables. As we use decision procedures to com-
pute predicate abstractions, we require quantifier-free predicates.
For a formulab € FOL and a set of atomic predicates- FOL, the
predicate abstractioof ¢ w.r.t. the setP is the strongest formula

W (in the implication order) with atomic predicates frdmhsuch
that$ impliesy. LetM: PC — 27Ok be a mapping from program
locations to sets of atomic predicates. The operaRyj is the ab-
straction of the operat&P w.r.t. . Formally, letp denote a set of
states, and Igfop : pc) be a command. TheBPp.¢.(op : pc) is the
predicate abstraction &fP.¢.op w.r.t. [1.pc.

Let SP be a syntactic strongest postcondition operation, $ihd

its abstraction w.r.t. the mapping. For any tracd, the fracet is
(1) feasibleif there exist statesp, 1, . . . ,Sh € vV such thas; %S,-H

for j =0,...,n—1, and infeasible otherwise; (HP-feasibleif

SP.true.t is satisfiable, an®P-infeasibleotherwise; and (3)1-

feasibleif SP.true.t is satisfiable, andil-infeasibleotherwise.
The two notions (1) and (2) coincide [23].

Subclasses of programs. A program isflat if it is a single-
ton {Cpain}, and there is no edgépc,pc) in Cpain Such that
Op(pc,pc) is a function call or a return. A program minter-
freeif all lvalues and expressions have typet. Specifically, a
pointer-free program does not have any references. In the follow-
ing, we shall consider four classes of programs: (CRi$$lat and
pointer-free, (Clas®ll) pointer-free (but not flat), (Clag@lll) flat

In particular, Theorem 1 states that our predicate discovery proce-
dureExtract is completdor each class: for an infeasible trace¢he
predicate majextract.t is precise enough to make the trefen -
infeasible {.e.,the infeasible traceis not a trace of the abstraction).

If all integer variables are initialized to some default integer value,
say 0, then all satisfying assignments of 8fe of a trace will be
integral even if thé&SP is interpreted over the rationals. Thus, if the
trace is infeasible, our proof system can derive the unsatisfiability
of the strongest postcondition.

In the next two sections, we describe in detail how we mine pred-
icates from proofs of unsatisfiability of spurious error traces. First
we consider programs in the classgsandPIl. We then generalize
our results to the class&sll andPIV. For a given trace of each
class of program, we define the following operators. First, we de-
fine the concrete and abstract strongest postcondition opefdtors
andSPp, which take a formula and an operation and return a for-
mula, and we extend them to the entire tracblext, we define an
operatorCon, which returns aonstraint map This is a function
that maps each poinbf the tracd to aconstraintthat corresponds

to theith operation of the trace. The conjunction of the constraints
that are generated at all pointstaf the trace formula (TF) fot,
which is satisfiable iff the trace is feasible. Finally, we define the
procedureExtract, which uses a proof of unsatisfiability of the TF
to compute a functiofil that maps each program location to a set
of atomic predicates such that the traégM-infeasible.
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SP.o.t

SPh.¢.t

Con.(,N).t

(x:=e:pg)

(assune(p) : pg)
t1;t2

(v:=f(&:pa);
ty;
(return: pc;)

I (OX /X A x=elX/])
wherex is a fresh variable
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SP.(SP.¢.t1) .t

3. 0y ]
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AYy=t
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a.(MN.pc).(SP.¢.t)

SPR.(SPr.$.t1).t2
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(3, 0. 0ly /vl
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A 3V . SPp.true.ty

AYy=T)

(0,I[i — (Sub.®/.x=Sub.6.€)])
wher® = Upd.8.{x}

(6, i — Sub.8.p])

Con.(Con.(6,T).t1).t2

(6.1
where
6 = Upd.6.{y}
6, = Upd.0'.V;
M =T[i — Sub.6;.¢=Sub.6.g

X are the formals of
r is the return variable of

Vi =V \(symuir})

(8o,M0) = Con.(6;,1N).t1
[ =Tolj — Sub.8'.y = Sub.60.r]
r is the return variable of

Figure 6. Postconditions and constraints foPl and PlI traces.

5 Programs without Pointers

5.1 Flat Pointer-free Programs:PI

Strongest postconditions and constraints. We first define the
semantics of flat pointer-free programs in terms of a syntactic
strongest postcondition operatbP and its predicate abstraction
SPn (w.r.t. a predicate mafl). In Figure 6 the first three rows de-
fine the operatorSP andSPp for traces ofPl. Each operator takes

a formula inFOL and returns a formula iROL. The operatoSPp

is parameterized by a mdp from PC to sets of atomic predicates.
With this definition ofSP, we can show that Theorem 1 holds.

An Ivalue mapis a function® from Lvalsto N. The operatot/pd:
(Lvals— N) — 2Lvals _, (| vals— N) takes a maj® and a set of
IvaluesL, and returns a mag@’ such that®’.| = 6.l if | ¢ L, and

0.1 =i, for a fresh integei if | € L. The functionSub takes an
Ivalue mapd and an Ivalué and returngl, 6.1). The functiorSub.0

is extended naturally to expressions and formulasnetvIvalue
map is one whose range is disjoint from all other maps. We use

Ivalue maps to generate trace formulas (TF); at a point in the trace,

if the map is6, then the the paitl,0.l) is a special constant that
equals the value of at that point in the trace. Whenever some

Algorithm 1 Extract

Input: an infeasible trace= (opy : p&y);-..; (opn : PGy)-
Output: a mapll from the locations of to sets of atomic predicates.
M.pg:=0for1<i<n
(+,T) := Con.(Bo,o)
P := derivation ofA1<j<p[.i F false
fori:=1tondo
07 = Naicj<iT -]
oF = Aiya<j<nl -]
W=1TP.(¢7,07).(P)
M.pgG :=M.pg UAtoms.(Clean.|))

return 1.
(assume(b > 0) : pcy); (b,0) >0
(c:=2xb:pc); (c,1) = 2% (b,0)
(a:=b:pc); (a,2) = (b,0)
(a:=a—1:pcy); (a3 =(@2)—1 ¢~
(assume(a < b) : pcs); (a,3) < (b,0) T
(assume(a=cC) : pcs) (a,3) =(c,1)

Figure 7. Cutting a Pl trace.

the entire history of the trace in the constraint map.

ProPOSITION 1. [Equisatisfiability] For a trace t let(6,I') =

Ivaluel is updated, we update the map so that a fresh constant iscCon (6g,Ig).t and let¢p = A;-j-,T.i. The trace t is feasible iff

used to denote the new valuelofor every such constaat= (1, i),
let Clean.c = |. The operatolClean can be naturally extended to
expressions and formulas BOL.

The constraints are generated by the functi@m, which takes

a pair (6,I) consisting of an Ivalue map and a constraint map

N N — FOL, and a commandpc: op) € Cmd and returns a
pair (6/,I'’) consisting of a new Ivalue map and constraint map.
We generate one constraint per command. For a traeéop; :
pcy);-..; (opn i PGy), if (8/,T") = Con.(6,T).t for some initiall", 8,
thenr .i is the constraint foop;, and it can be shown by induction
on the length of the trace, that the P <;<,I.i is satisfiable iff
SP.true. is satisfiable. The generated constraints are a skolem-
ized version of the strongest postcondition. The functi@n is
defined in the first three rows of Figure 6. If thi operation in the
trace is the assignmexrt= e, we first update the map so that a new
constant denotes the valuexgfand then we have théh constraint
specify that the new constant farhas the same value as the ex-
pressiore (with appropriate constants plugged in). For an assume
operationassume(p), the constraint stipulates that the constants at
that point satisfy the formula. The constants enable us to encode

the ¢ is satisfiable. Moreover, the sizedlis linear in the size oft.

Predicates from cuts.Given an infeasible trade we want to learn

a set of predicates that exhibit the infeasibility of the trace. Our
method has been described in Section 2 and is made precise in Al-
gorithm 1. Algorithm 1 first sets the mdp to be the empty map.

It then generates the constraint nfafor the entire trace and con-
structs the TF by conjoining all constraints in the rangé ofLet

P be a proof of unsatisfiability of the TF. Then for each pdint
in the trace, wecut the constraints into those from the firstom-
mands ¢ ) and those from the remaining commands). Using

the proof® we compute the interpolart for (¢ —,¢ ") and add the
atomic predicates that occurynafter cleaning to the predicate map
for pg. The correctness of this procedure is stated in Theorem 1.

ExampLE 1: Consider the infeasible trace from [3] shown on

the left in Figure 7. On the right, the figure shows the result of
Con.(80,l0).t, where the initial lvalue mafy mapsa, b, andc

to 0. To the right of each command is the corresponding con-
straint. When we cut the trace at the fourth location, the result-



(a:=0:pcy); (al)=0 . return valug of the function. To deal with possibly recursive func-
(b:=inc@):pg); (@2 =(al) ¢ tions, we use a different lvalue map for the constraints of the func-
E;?i“)’(”i (1’(,; (p;) -Pe); g ‘31; = 2)‘?‘3>2>+ 1 _ ¢~ tion body, because we do not want assignments to local variables of
(r - pc4');03 ' (r,75> _ <x,74> : o the called functlon to c_hgnge the values of variables in .the calling
(returnr : pcs); (b,6) = (r,5) context. With these definitions, the analogue of Proposition 1 holds
(assume(a+ b—1) : pcs) (a,1) # (b,6)—1 bc for PIl programs.

Figure 8. Cutting a PlI trace. i - i
ExAMPLE 2: Consider the trace in Figure 8. The functioo has

the formal parameterand return variable, and returns a value one
greater than its input. Assume that we start with an Ivalue &ap
which mapsa, b, X, andgy to 0. The constraint€on.(6p, true).t
are shown on the right in Figure 8. a

ing pair (¢—,6™) consists of the conjunctions of the constraints
from above and below the line, respectively. The interpolant in this
case is(a, 3) < (c,1) — 2, which upon cleaning yields the predicate
a < c— 2. Notice that the constants common to both sides of the
cut denote the values of the respective variables after the first four pregicates from cuts.To get well-scoped predicates, we need only

operations, an¢ ™ implies the interpolant. = to generalize the notion of cuts. For each locaiiaf a trace, in-
stead of partitioning the constraints into those due to commands
5.2 Pointer-free Programs: Pl beforei and those originating from commands aftewe use the

partition shown in Figure 8. Lét (resp.,ir) be the first (resp., last)
command in the call body to which thigh command belongs. So

We now move on to programs with function calls, but no pointers. -~ : . ;
We assume that there are no global variables, and that each funciL is the first command after a function call, and the operation after

; ; ; : ; i turn. We consider four sets of constraints: ¢(1)corre-

tion returns a single integer. When dealing with such programs, the IR IS &€ . " ; .

analysis of the previous section may learn predicates that are notSPOnds to the commands between (and includipgindi, which
may include commands that call into and return from other func-

well-scopedij.e.,for some location, we may extract predicates that ti 2o+ ds 1o th ds from 1 toi hich
contain variables which are out-of-scope at that location, and such 10nS: ()¢ corresponds to the commands from1 toig, whic
may include commands that call into and return from other func-

an analysis is not modular. For a modular interprocedural analy- ti between + 1 andiv. (3) & ds to th d
sis, we need to compute the effect of a function in terms of the tions between + 1 andig, (3) oc corresponds 1o theé commands
in the calling context of commanidwhich occur before the call

arguments passed to ite., we wish to relate the “output” of the X L o
g b c- P of the function to whichi belongs, and which include the call of

function to its “input.” The way to do this is to introduce symbolic . . .
variables that denote the values the function is called with, perform .the function, and (4p¢ corresponds to the commands in the call-

the analysis using the symbolic variables, and then, at the call site, N context which occur after the return of the function to which
plug in the actual values for the constants to see the result of thebelongs, and l’Vh'Eh |nEIude+the return. We then construct the in-
function. This method is known as polymorphic predicate abstrac- [€P0lant of(@~,¢™ Adc Adc). One can check that the constants
tion [1]. We assume that the program has been preprocessed s¢ommon top~ andd™ A¢¢: are denote the values of locals (includ-

that (1) for every function and every formal parametethe func- ing the return variable) at locatiopand that the constants common
tion has a new local, so-calleymbolicvariable@, which holds ~ to ¢~ and¢ are denote the values of symbolic variables upon en-
the value of the argument when the function is called and is never try to the function, which are never changed by the function, and
written to (the set of symbolic variables 6fis sym), and (2) the hence also the values of the symbolic variables at locatithese

are also locals of the called function). Hence the interpolant, and

thus the predicates we compute, are in terms of variables that are
¢ in scope at location and they refer only to current values of those
variables at location

first statement of every function isssume(AiX = ¢y ), where the
conjunction ranges over the sét of formal parameters. Finally, to
avoid clutter in the definitions due to renaming, we assume that di
ferent functions have different names for their variables, and that no
function calls itself directly (a functiofi can of course call another

function which, in turn, callg). To see why such an interpolant suffices, consider first the parti-

tion (o~ A DT, dg A ¢g), namely, into constraints that belong to
. . . the function body and constraints that belong to the calling con-
Strongest postconditions and constraints. Figure 6 shows the eyt The resulting interpolanp contains the symbolic variables
syntactic strongest postcondition opergiérand its predicate ab- ot the function to which the cut-point belongs, as well as the re-
stractionSPp, for PlI traces. The_fourth row shows the case of calls /i variabler. i.e. the inputs and output of the called function.
and returns (we process the entire call-return subtrace at once). Th§oreover,y abstractly summarizes the information about the func-
strongest postcondition for this case is computed as follows: We re- +iq call which renders the trace infeasible becabse(oc A d™)
placey as for an assignment, we set the symbolic variagiet the is unsatisfiable. Now, at each point inside the function, we need
argumentgfy' /y], we then comput8P for the body of the function 44 know what information is required to show thatholds at the

t1 w.r.t. true (the f|_rst operr’:\tlon in the function will equate t_he for-  and. To get this information, we could compute the interpolant of
rr;lall palrameteri‘ vr\]ntr'] theh(.psrz,I and we su.bﬁeqfuentlyI quhantlfyI out (&=, 6" A—), but since-y is implied byo_ /\¢a we can instead

all locals except the's, which leaves us with a formula that relates directly compute the interpolant 66,9+ A (0o A 0&)). The re-

the return variable to thes. We then sey tor and quantify out sulting predicate discovery algorithBxtract for traces ofPll pro-

the@s andr. The abstract postcondition does the same, only it uses rams is shown in Fiqure 2. The correctness of this procedure is
the the abstract postconditi&®n of the function body instead of gs]tated in Theorem 1 9 ’ P

SP, and then abstracts the resulting formulas using the predicates
of pc;, the location of the caller after the function returns. The gen-
erated constraints are again a skolemized version of the strongesEXAMPLE 3: Recall the trace and constraints from Figure 8. The
postcondition. The constraint for the call command is the formula formulas that result from cutting the trace at the fourth location
that equates th@s with the corresponding actual parameters, and are¢— = (F.3AT.4) = ((x,3) = (@, 2) A (x,4) = (x,3) + 1) and

the constraint for the return is the formula that equatesth the t=T5=((r5 = (x,4)). Furthermorep; = (F.1AT.2) =



Algorithm 2 Extract
Input: an infeasible trace= (opy : pcy);...; (opn : PGy)-
Output: a mapl1 from the locations of to sets of atomic predicates.
M.pc:=0forl1<i<n
(-,T) :=Con.(Bo,lN0)
P := derivation of\<j<n.i - false
fori:=1tondo
(iL,ir) := (L.t.,Rt.0)
T =Nipragj< T
Ot = Aisacj<ip-1T-J
bc = (A1<j<iy T-D A (Aiggjen )
Yi=ITP.(d 0" Adc).(P)
M.pG :=M.pc UAtoms.(Clean.y)
return 1.

(assume (Xx#Y) 1pc);  (X,0) # (y,0)
(xx:=0:pcy) (%(x,0),3) =0
(y :X:po\%)r <Y74>:<X70>/\<*<y74>75>:<*<x0)73>
(assume(y=X) :1pCy);  (¥,4) = (X, 0) A (x(y,4),5) = (x(x,0),3)
(xy=xy+1:pcs);  (+(y,4),6) = (x(y,4),5) + 1A
ite.((x,0) = (y,4))
((+(x,0),7) = (x(v,4),5) + 1)
((x(x,0),7) = ({(x(x,0),3)))
(assume(xx=0):pcs)  (x(x,0),7) =0

Figure 9. Cutting a PlII trace.

((a,1) =0A (®.2) = (a,1)) and ¢ = (T.6AT.7) = ((b,6) =
(r,5) A ({(a,1) # (b,6) —1). The symbols common t¢~ and
O A (b Add) are(x,4) and (g, 2), which are the values of
and g at that point. The interpolant i, 4) = (g, 2) + 1, which
yields the predicate = @+ 1. Similarly, when we cut the trace at
the fifth location, the common variables gre5) and (¢, 2), and

and formulas ofFFOL. Expressions and formulas appearing in the
program do not contain memory variables], or upd.

Symbolic variables. We must generalize the notion of symbolic
variables, which freeze the formal parameters of a function, be-
cause now a pointer may be passed to a function and the func-
tion may change the value of some cell that is reachable using
the pointer. Hence, we have to relate the values of cells at the
return of a function with the values the cells had upon the corre-
sponding function call. For a set of variables, letReach.X =

{+Kx| x € X andk > 0} be the set of cells that are reachable frém

by dereferences. As we do not have recursive types, this set is finite
and syntactically computablé {s bounded by the type of). The

set ofsymbolic variable®f f is nowsym = {q || € Reach.Xs},
whereX; is the set of formal parameters 6f As before, (1) the
symbolic variables are local variables of the function which are
never written to, and (2) the program is changed, by a syntactic
preprocessing pass, so that each Ivalue that is reachable from the
formal parameters reads its value from the corresponding symbolic
variable (.e., xfrom @, *x from @.x and so on) in the very first
statement of the function (usingssume(A|creach.x; | = @))- As
before, for modularity we analyze the function using the symbolic
variables, and replace their values with the actual parameters at the
call sites [1, 29]. For a symbolic variabdg, define(q |) =1.

Constraints for modeling allocation. Suppose there are two vari-
ablesx andy, each of typeref int. When the program begins,
and the pointers are allocated, the standard semantics is that their
values are not equal. For completeness, this must be explicitly mod-
eled by constraints. We modify the transformation, described ear-
lier, which inserts into every function as first statementagume

the cleaned interpolant which summarizes the function’s behavior that copies the symbolic variables into the formal parameters, to

for all calling contexts is = @+ 1. Notice that at this point, which

include another clause that states that every two distinct Ivalues

is the last location of the function body, the interpolant is guaran- I1,l2 € Reach.(Vs \ (Xf Usymy)) of reference type are not equal.

teed to only use the “input” and “output” variables of the function.

Again, as the types are nonrecursive, this clause is quadratic in the

When cutting the trace at the sixth location, we get the predicate size of the function. An example is the firstsume in the trace of

b=a—1, which is again well-scoped fqrcg, where the variables

X, @, andr are not in scope. Itis easy to check that these predicates

make the trace abstractly infeasible. O

6 Programs with Pointers

We now consider programs that deal with pointers. As before, w

first consider “flat” programs, and then move on to programs with
procedures. The only difference with the previous section is in the

constraint generation; the algorithBxtract is exactly the same
as before, only it uses a different functi@on. In this somewhat

Figure 9.

Constraints for modeling the store with Ivalue maps. Using

sel andupd it is straightforward to generate the strongest post-
conditions for programs with pointers; see Figure 10. Unfortu-
nately, the theory of arrays does not have the interpolant prop-

e erty, thus we cannot get interpolants from TFs that use this the-

ory. For example, the conjunction & = upd(M, x,y) and (a #

b) A (sel(M,a) # sel(M',a)) A (sel(M,b) # sel(M’,b)) is un-
satisfiable, but there is no quantifier-free interpolant in the common
set of variables, namelM, M’}. We surmount this hurdle by mod-

technical section we show how the constraint generation must be &/ing the memory axioms using (generalized) Ivalue maps, and by

extended to handle pointers in a sound and complete way.

Stores. The classical way to model the store is to use memory
expressions and the theory of arrays [13, 26, 27], which comes

equipped with two special functionsel andupd. The function
sel takes a memor and an address and returns the contents
of the address; the functionupd takes a memory, an address
a, and a valuey, and returns a new memory that agrees viith
except that the addressnow has values.. The relationship be-
tweensel andupd is succinctly stated by McCarthy’s axiom [21]:
sel(upd(M,a,v),b) =ite.(a=b).v.sel(M,b). Fora memory vari-
ableM and a variable;, defineM.x = se1(M,X), and for an Ivalue
|, defineM.(xl) = sel(M,M.l). With some slight abuse of nota-
tion, we useM in this way to denote a map from Ivalues to memory
expressions ovevl. We naturally extend the may to expressions

instantiating the array axioms on demand. Recall the definitions of
Ivalue maps and)pd from Section 5. The sehLval consists of
elementscl generated by the grammalt::= (x,i) | (cl,i), where

i € N. The functionClean of the previous section is extended by
Clean.(x,i) = x andClean.(cl,i) = x(Clean.cl). Eachcl € ChLval

is a special constant that denotes the valuéledn.cl at some point

in the trace. The functiofiub of the previous section is extended to
all Ivalues bySub.8.(+*x) = (x,8.x) if k =0, andSub.0.(x*x) =
(Sub.8. «*~1x 8.(xXx)) otherwise, and extended naturally to ex-
pressions, atomic predicates, and formulas.

Constraints for assume operations.Modeling the memory with
sel andupd gives us some relations for free,g.,from x =y
(modeled assel(M,x) = sel(M,y)) the equalityxx = xy (mod-
eled assel(M,sel(M,x)) = sel(M,sel(M,y))) follows by con-



gruence. We explicitly state these implied equalities when generat-

ing constraints, by closing a predicate with the operaltar*.true:
FOL — FOL, where

(clos*.b.p1) op (clos*.b.pz)  if p= (p1op p2),

—(clos™.(=b).p1) if p=(=pa).
clos*.b.p={ PAAgzken((+K11) = (+412)) if p=(l1=12) and
b= true,
p otherwise,

providedtyp.l; = typ.l, = refNint. The formulaclos*.true.p
explicates all equalities inferred by the memory axioms from the
formulap. When generating the constraints &fsume(p), we first
“close” p usingclos*, and then generate constraints for the result.
Consider, for example, the constraint for the fourth command in
Figure 9. For any formulg that can appear in assume, we
haveM.p < M.(clos*.true.p) in the theory of arrays. Using this
equivalence, we can show the following lemma, which tells us that
the constraints have been modeled adequately. For a prdgram
Ivalue «x is well-typed inP if typ.x = ref Nint for someN > k,
i.e.,if X has typeref int, thenxx is well-typed but not x «x. A
formula p is well-typed w.r.t.P if (1) it does nor contain memory
variablessel, orupd, and (2) each Ivalue that occursyris well-
typed inP.

LEMMA 1. For a programP, two formulas pp’ € FOL that are
well-typed w.r.tlP, and an Ivalue map, the condition Mp implies
M.p' iff Sub.0.(clos*.true.p) impliesSub.0.p'.

Constraints for assignments.When assigning tel; we must ex-
plicate that for all Ivaluesl, such that1 = |5, the value of«l, is
updated as well. LeEquate be a function that takes a pair of lvalue
maps(01,6,) and a pair of expressiolth, I2), and generates equal-
ities between the names hf and its transitive dereferences under
61, and the names db and its transitive dereferences under
Formally,

Equate.(81,02).(I1,12) = A\ (Sub.By.(+11) = Sub.8p.(+K12)),
0<k<N

wheretyp.l1 = typ.l, = refNint. Define the functiorEqAddr,
which takes a pair of Ivalues and returns a formula that is true when
the Ilvalues have the same address, HaAddr.(+1xy, xk2xp) =
falseif ki =0o0rk, =0, anquAddr.(>kk1X17 *kzxz) = (*kl_lxl =
*kZ‘lxz) otherwise. For a functiori (which ismain for flat pro-
grams), letLvals f = Reach.Vs. For an Ivaluel and a function

f, let Alias.f.l = {I’ | I’ € Lvals f andl’ may be aliased tb}. We

only require thatlias. f.I overapproximates the set of Ivalues that
can actually alias.

Finally, we define the functioAsgn, which generates appropriate
constraints for an assignmeht= e. The functionAsgn takes a
function namef, an Ivalue mag®, and a pair(l,e), wherel is an
Ivalue ande the expression that is being written iftcand returns
a pair(6',¢’) of an updated Ivalue mef¥ and a formulap’. Define

0 = Upd.0.S whereS= {+X" | I € (Alias.l) U {l} andk > 0}, and
define

¢’ = Equate.(6/,0).(1,e)A

(Sub.8.(EqAddr.(1,1"))).
(Equate.(6,0).(I’,e)).
(Equate.(6,0).(I",1")

ite.

I’eAlias.f.|

The first conjunct ofp’ states that gets a new value, and all
transitive dereferences bande are “equated”i(e., x| gets the new

value xe, and so on). The big second conjunctddfstates how
the potential aliasek of | are updated: if andl’ have the same
address, then the new value l6f(given by Sub.8'.l") is equated
with e; otherwise the new value ¢f is equated with the old value
of I’ (given bySub.8.l"). This generalizes Morris’ definition for the
strongest postcondition in the presence of pointers [24].

LEMMA 2. Let | := e be an assignment in a prograih let
¢ =SP.true.(l :=¢e), and let(6’,¢’) = Con.(Bp, true).t for some
Ivalue mapdy. For every formula g FOL that is well typed w.r.1?,
the formulad implies Mp in the theory of arrays iffy’ implies
Sub.6'.p.

6.1 Flat Programs:PIll

The first three rows of Figure 10 give the definition of the operator
SP using the theory of arrays, as well as the generated constraints.
The definition ofSP is the same as before, except that the 68w
operator is used. Notice that the “current” memory is always rep-
resented byM. For assignment§P states that the current memory

M is now an updated version of the old memory, which is renamed
M’. We useAsgn to generate the appropriate constraints for deal-
ing with the possible alias scenarios. For assume operatidhs,

is defined as before, except that the constraint generated is on the
“closure” of the predicate usingos*. Constraints for sequences are
obtained by composition. The size of the constraints is quadratic in
the size of the trace. By induction over the length of the trace, split-
ting cases on the kind of the last operation, and using Lemmas 1
and 2, we can prove the following theorem.

THEOREM 2. Given a trace t of a progran®, let (8/,') =

Con.(00,lM0).t, let ¢y = SP.true.t, and let¢p = A1<j<nl.i. For

every formula pc FOL that is well-typed w.r.tP, the formula¢,

implies M p in the theory of arrays if§ impliesSub.®’.p. Hence,
the trace t is feasible iff the formulpis satisfiable.

Given the new definition o€on, the algorithm for predicate dis-
covery is the same d@x«tract (Algorithm 1), and Theorem 1 holds.

EXAMPLE 4: The right column in Figure 9 shows the constraints
for the trace on the left. For readability, we omit unsatisfiable and
uninteresting disjuncts (for the second and third commands). At the
fourth cut-point of this trace, the common variables @@, 4), 3),
(y,4), (x,0), and (x(x,0),3), which denote the values &y, v,

X, andx at that point in the trace. The interpolant for this cut
is (x(y,2),3) = 0, which gives the predicatey = 0 for the loca-

tion pc,. i

6.2 General Programs:PIV

The main difficulty when dealing with functions and pointers is in
handling the semantics of calls and returns, because the callee may
be passed pointers into the local space of the caller. The complex-
ity arises when we wish to abstract functions polymorphically [1],
because then we have to summarize all effects that the callee may
have had on the caller’s store at the point of return. One way to do
this is to imagine the callee starting wittcapyof the caller’s store

and, upon return, the caller refreshing his store appropriately using
the callee’s store. As we shall see, the difficulty is only in modeling
this appropriately with strongest postconditions. Following that, it
is straightforward to generate the constraints, and the method for
learning predicates is again Algorithm 2, only now using the new
definition of Con.



t SP.¢.t

Con.(6,IN).t

(I:=e:pg) AM".(¢[M/M]AM = upd(M’',M".I, M’ €))

whereM’ is a fresh store

(assume(p):pg)  $AM.p

t1;t2 SP.(SP.¢.t1).tz
(f(¥):pg); 3IM’, My, Mo.syny.
t; $[M'/M]
(return: pCj) AM =M Adig
A ¢'[Mo/M]

N New‘(L, P, N).(Mo, M, )

A M = copy(M’;Mg,R)
whereM’, M;, Mg are fresh stores

d1d = Agesym @=Mi.(@ 1)[y/X]

X are the formals of

R={x@ | pesym}

¢’ =3V .SP.truet;

Vi =Vi\sym,

L = Ivalues in scope gic,

P =sym andR = Reach.P

(C]
wher@',¢) = Asgn.f.0.(1,€)

Tl — 9])

f is the function in whichpg belongs

(6,F[i — Sub.B.(clos*.true.p)])
Con.(Con.(8,).t1).t

.1

where 8' = Upd.8.(Reach.Vy)

b1 = /\(pesyrq Equate'(el ,9)((]) ((PU[Y/X])

Ci =T[i— ¢id]

(8°,Io) = Con.(8',1)).t;

L,P,R R asforSP

I =To[j— New.(L,P,R).(8,8°) Acopy.(8,8,8°).(L,R)]
0 = Upd.6.L

Figure 10. Postconditions and constraints foPlll and PIV traces.

(xy:=0:pcy); (x(1,0),1)=0
(inc(y) : pey); (B, 1) = (1,0) A (@, 2) = (%(y, 0), 1)
(assume (X = @ (%, 4) = (@, 1)
AxX= Q) : PR); A(%(X,4),5) = (x(¢, 1),7)
A<*<X>4>75> = <(p*X72>
(#x:=#x+1:pcy); ((x,4),6) = (x(x,4),5) +1
ite.((x,4) = (¢, 1))
({(=(0,1),8) = (x(x,4),5) +1)
C (+(01).8) = (x(91).7)
(return :pcs); ite.((y,0) = (@ 1))
((*(%,0),9) = (x(9, 1),8))
((x(%,0),9) = (x(y,0),1)).
(assume(xy#1):pc)  (x(y,0),9) #1

Figure 11. Cutting a PIV trace.

As we allow functions to pass pointers into the local store as argu-

ments, to keep the exposition simple, we can assume w.l.0.g. that

(1) there are no global variables (these can be modeled by passin
references), and (2) there is no explicit “return” variable; instead,

return values are passed by updating the contents of some cell that

is passed in as a parameter.

EXAMPLE 5: Consider the trace on the left in Figure 11. The caller
(main) passes a pointsrto the store to the callemc. The callee
updates the memory address(which is called«x in inc). There
are two symbolic variableg, and@.x in inc, corresponding to the
formal parametex and its dereference. Th&sume at locationpc;
loads the symbolic variables into the formal parameters. O

g

in the symbolic variables of the callee. It can be shown that this is
sound for our language. To express the copyin§fn we use the
operatorcopy: for a destination memoryly, a source memorils,

and a dereferenced Ivalug the expressionopy (Mg, Ms, #l) is the
result of updatingViy such that all cells reachable franhave the
same value as iNs. Formally, we defineopy(Mq,Ms, %) as

{

We never need to copy into a variabde The functioncopy is ex-
tended to a sequence of Ivaluies (l I7) by copy(Mgy, Ms, T)
copy(copy(Md,Ms,*l),Ms,r’). It can be shown that the result is
independent of the order of Ivalues. Hence, we can consider the
operatorcopy to be defined ovesetsof Ivalues. We can mimic
“copying” by Ivalue maps as follows. Given three lvalue maps
&' andbs, an Ivaluexl, and a sequencR of Ivalues, define
(ed7ea7es)'(*|7R) =

upd(Mg, Mg.l,Ms. (1))
copy(upd(Mg, Mg.l,Ms.(xl)), Mg, x x1)

if typ. x| = int,
otherwise.

B4
copy.

Sub.8). x| = Sub.6y. x| if R=",

ite.(Sub.8}.l = Sub.64.9).
(Equate.(8};,6s).(xl,*@)).
copy.(64,6},6s).(|,R)  if R=9uR.

Finally, for a setL of Ivalues, definecopy.(8y,6,8s).(L,R) =
AsleL copy.(84,65,8s).(+,R).

When a function returns, we update all local variables of the caller.
We setfy to the Ivalue map of the calldreforethe call, andd); =

Soundness.Every cell in the caller's store which is modified by ~Upd.8q.L is the Ivalue map of the callefter the call, wherd. =
the callee must be reachable from a parameter passed to the calledeach.{*x | xis a local variable of the callgris the set of Ivalues

e.g.,the cell pointed to by in the caller is the same as the cell
pointed to byx when the functioninc is called, hence upon re-
turn the value ofy should be the value af(¢x) (as in the interim,
the callee may have changgll Every cell of the caller which is

of the caller that can change (no local variablean change as the
result of a call; only dereferences can change). Webs¢b the
Ivalue map of the callee upon return, aRd= sym is the set of

cells that were passed to the callee, and hence must be copied back

unreachable from the parameters passed to the callee remains unito the caller. It can be checked that the formulas resulting from

changed as a result of the call. This is modeled inSReseman-
tics by copying the contents of the callee’s store, at the locations

different permutations dR are equivalent.

reachable from the passed parameters, into the caller's store. TheCompleteness.For completeness, we must ensure that we prop-

locations that are reachable from the passed parameters are frozeerly model the semantics of allocation.

It can be shown that



it suffices to ensure that every cell that is being “returned” by x@ = @.x+ 1. This predicate asserts that the present cell pointed to
the callee i(e., reachable from a symbolic variable of the callee) by @ has a value 1 greater than the cellhad upon entry td. O

is either a cell passed to it.€., equal to some symbolic vari-

able) or is brand newi.g., different from Reach.V¢, the set of

cells known to the caller). If a cell is different from those of 7 Experiments

the caller, then transitivity of equality and the same check on all
subsequent returns ensures that the cell is different from all pre-

h . . We have implemented the interpolation based abstraction refine-
viously allocated ones. The check is encoded with the op- P P

ment scheme in the software model checkem8r [19]. The

erator New. For an Ivaluel of reference type, a sdt of ; P

. . ’ algorithm for generating interpolants uses theM#YRE proof-
Ivalues, ar}djwo slforeg[ and rl\]/IL, def|ned|ff.(l,5).(l\¢|leLl) = generating theorem provérFor efficiency, we have implemented
Arel=(M.l = MLI"). Given three sets, P, andR of Ivalues, several optimizations of the basic procedure described in this paper.

and a paiMp andM; of stores, defindew.(L,P,R).(Mo,M,) =
(Arer(diff.(r,P).(Mgo,M|) = diff.(r,L).(Mo,M;)). HereL =
Reach.Vy is the set of local variables of the callgf andP = sym
is the set of cells passed to the calleeand R = Reach.sym
is the set of cells returned by the callee. The stbtg is
the store upon return fronf, and M, was the store upon en-
try to f. The formula says that for every cellthat is returned,
if r is different from all cells passed td, thenr is different
from all local cellsL of the caller f’. This is generalized to
Ivalue maps as followsdiff.(I,L).(6},8) = AjreL=(Sub.6.l =
Sub.6 .I") andNew.(L,P,R).(8,0') = (Arer(diff.(r,P).(6,0")) =
diff(r,L).(6,0")).

First, we treat sequences of assignments atomically. Second, we do
not cut at every point of a spurious error trace. Instead, we perform
a preliminary analysis which identifies a subset of the constraints
that imply the infeasibility of the trace, and only consider the in-
structions that generate these constraints as cut-points. It is easy to
check that the optimized procedure is still complete. For pointers,
we only generate constraints between expressions of the same type.
With these optimizations, we find, for example, that the two pred-
icatesa < c— 2 andb > 0 suffice to prove the trace in Example 1
infeasible. These are fewer predicates than those generated by the
heuristically optimized predicate discovery scheme of [3].

We ran interpolation basedLBsT on several Windows NT de-

Strongest postconditions and constraintsUsing these functions, ~ Vvice drivers, checking a property related to the handling of /O
we can generate the strongest postconditions and the constraints aBequest packets. The property is a finite-state automaton with 22
shown in Figure 10. Assignments, assume operations, and sequencstates [2]. The results, obtained on an IBM ThinkPad T30 laptop
ing is handled as before; we describe here only function calls. For With a 2.4 GHz Pentium processor and 512MB RAM, are sum-
SP, we rename the caller's store k' as it will change as a result ~ marized in Table 1. We present three sets of numbers: ‘Previ-
of the call. We pass a memoly; equal toM’ to the callee, equate ~ 0US’ gives the times for running the previous version afABT,

the actual parameters with the symbolic variables, and conggute ~ Without interpolants; ‘Craig’ uses interpolants to discover pred-
of the callee. Then we rename the memory returned by the calleeicates, and drops predicates that are out of scope, but it does

to Mo, and copy back the local store modified by the call ikto not track different sets of predicates at individual program loca-
to get the current memoryl. Additionally, we add distinctness  tions; ‘Craig+Locality’ uses interpolants and tracks only the rel-
constraints to model allocation. The definitionS#p is similar to evant predicates at each program location. The previous version
the one before: before it was the predicate abstracti@Potising of BLAST timed out after several hours on the driversrport

SPp to analyze the call body; now it is the predicate abstraction andparclass. We found several violations of the specification
(using the predicates at the return location) of the $&y using in parclass. The numbers in the table refer to a version of

SPp recursively for the call body. The correctness of the constraint parclass where the cases that contain errors are commented out.
generation is stated in Theorem 2. The size of the constraints isBoth ‘Craig’ and ‘Craig+Locality’ perform better than the previ-

cubic in the size of the trace. Given the new definitionGai, ous version of BAST. When started with the empty set of ini-
the method for predicate discovery is Algorithm 2, and Theorem 1 tial predicates, ‘Craig’ is faster than ‘Craig+Locality’, because
holds. ‘Craig+Locality’ may rediscover the same predicate at several dif-

ferent program locations. However, since the predicates are tracked
extremely precisely (the average number of predicates at a program

e e oo oplocalion 1 much smaller thn te fotalrmber ofprcicaies -
straint from the assignmeny = 0 is (x(y, 1), 1) = 0. First the con- quired), ‘Craig+Locality’ uses considerably less memory, and sub-

. . . sequent runs (for example, for verifying a modified version of the
straint for the call command is the clausg, which loads the actual . )
parameters into to the symbolic constantsfat. The first com- program [18], or for generating PCC-style proofs [17]) are faster,

mand in the body loads the values from the symbolic constants into and the proof trees smaller.
the formal parameters; notice that we take the “closure”. We then

build the constraints for the increment operation. Now {y, xy},

P = {o,@x}, R= {*x¢}, andR = {@x,*@, @.x}. The constraint 8 References

New.(L,P,R).(,6°) simplifies totrue, because(y is not a ref- [1] T. Ball, T. Millstein, and S.K. Rajamani. Polymorphic predicate ab-
erence type, andigs, 1) = (y,0), i.e, it is a cell that was passed to straction. ACM Transactions on Programming Languages and Sys-
f. Let & be the map updating so thatxy is mapped to 9. Fi- tems 2003.

nally, the copy-back constraimbpy.(8,,8°).(L,R) is shown to

the right of the return. At the end, the assume operation generates ) ) ) )
the Constra'ﬂK*<y7 1>73> # 1. The set of generated constraints is [3] T Ball and S.K. Ra]ama'nl. Generating abstrac.t eXplanatIOnS of Spu-
unsatisfiable. Consider the fourth cut-point of this tracae, up rious counterexamples in C programs. Technical Report MSR-TR-
to and including the increment operation. The common variables 2002-09, Microsoft Research, 2002.

are (@, 1), (x(q,1),8), and (@.x, 2); they denote the current val-
ues ofgy, *@, and@.yx, respectively. The interpolant for this cut is 2VAMPYRE is available from

(x({@x, 1),8) = (@.x, 2) + 1, which upon cleaning gives the predicate http://www.eecs.berkeley.edufupak/Vampyre.

[2] T.Ball and S.K. Rajamani. Personal communication.




Program LOC Previous Craig Craig+Locality
Disc Reach Disc Reach | Preds Disc Reach | Preds| Avg/Max

kbfiltr 12301 1m12s | Om30s || Omb52s | Om22s 49 3m48s | Om10s 72 6.5/16
floppy 17707 7ml10s | 3m59s || 7m56s | 3m21s| 156 25m20s| Om46s | 240 7.7/37
diskperf | 14286 5m36s | 3m3s 3m13s | 1m18s| 86 13m32s| 0m27s| 140 10/31
cdaudio 18209 || 20m18s| 4m55s || 17m47s| 4ml2s| 196 23m51s| Om52s | 256 7.8127
parport 61777 - - - - - 74m58s | 2m23s | 753 8.1/32
parclass | 138373 - - 42m24s| 9mils 251 77m40s| 1m6s 382 7.2/28

Table 1. Experimental results usingBLAST: ‘m’ stands for minutes, ‘s’ for seconds; ‘LOC’ is the number of lines of preprocessed code; ‘Disc’ is the
total running time of the verification starting with the empty set of predicates; ‘Reach’ is the time to perform the reachability analysis only, given all
necessary predicates; ‘Preds’ is the total number of predicates required, and Avg (Max) is the average (maximum) number of predicates tracked at a

program location; the symbol ‘-’ indicates that the tool does not finish in 6 hours.
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