Synthesizing Converters between Finite State Protocols

Janaki Akella

Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh PA 15213

Abstract

Inter-process communication within computer sys-
tems 1s becoming increasingly important due to the
recent trend of integrating various types of subsystems
and system architectures. These subsystems may not
have been originally designed to work with one an-
other, therefore their integration constitutes a het-
erogenous computer system, where even small mis-
matches in protocols will prevent proper operation
of the system. Standardization of protocols is both
impractical and sub-optimal with respect to any par-
ticular subsystem because of the numerous and often
conflicting requirements. Thus inter-process commu-
nication can be achieved only by protocol conversion.
No general theory for synthesizing protocol conver-
sions exists, though there have been several successful
specific protocol conversions. In this paper we present
a general approach for synthesizing protocol conver-
sions, by adapting existing labelled transition system
theory.

1 Introduction

Inter-process communication within computer sys-
tems is becoming increasingly important due to the
recent trend of integrating various types of subsystems
and system architectures. In the past, heterogeneous
computer networks were used, but each computer was
itself homogeneous in that all its subsystems followed
the same protocol. But the proliferation of special-
ized applications such as input/output and network-
ing has resulted in the need to integrate various types
of subsystems within the computer system [1]. These
subsystems may not have been originally designed to
work with one another. therefore their integration con-
stitutes a heterogeneous computer system, where even
small mismatches in protocols will prevent proper op-
eration of the system [5]. Standardization of protocols
is both impractical and sub-optimal because of the
numerous and often conflicting requirements. Thus
nter-process communication can be achieved only by
protocol conversion. No general theory for synthe-
sizing protocol conversions exists. though there have
been several successful specific protocol conversions.
In such cases, the inter-process communication de-
vices (IPCDs) such as bus adapters, gateways, and
bridges convert one communication protocol to an-
other so that transactions begun on one bus can end on
another with minimum changes required in the hard-

CH3040-3/91/0000/0410801.00 © 1991 IEEE

410

Kenneth McMillan

School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213

ware and software modules of the two buses. In this
paper we propose a general approach for synthesiz-
g IPCDs by adapting Labelled Transition Systems
(LTS) [7]. Several studies [2] show that the required
rate of protocol conversion will in general be much less
than the maximum rate of information processing in
the interface subsystems. Thus the additional time
taken for protocol conversion may not be prohibitive.

Given the protocols of the interfaces that need to
communicate with one another, several issues arise
in automating the design of the protocol converter.
These issues can be classified into: information Trans-
fer issues, synchronization issues, timing issues, con-
currency issues, and observability issues. In this work,
we propose an approach to automate the generation of
the state machine of the protocol converter. 1.e.. given
the interface protocols which are represented by finite
state machines, we propose an approach to generate
the finite state machine representing the protocol con-
verter. We assume that the data path of the protocol
converter is already given.

1.1 Related Work

Although little work was done in the past on auto-
matically synthesizing inter-process communications
devices, recently work has been done on two related
problems: synthesis of digital syvstems with interfaces
[3], and synthesis of transducers which interface cus-
tom chips to their system buses [10]. Nestor's work
deals with synthesizing the digital system together
with the interface from a ISPS { Instruction Set Pro-
cessor Specifications) description, when the commuuni-
cation protocols are matched. Timing labels attached
to relevant statements were used to calculate inter-
event tuning. to arrive at a schedule of events. Here.
the sequence of events between the digital system and
its interface is indirectly obtained from the timing in-
formation. with the consequent problem that the tim-
ing between every pair of events is required to deter-
mine their sequence. Borriello’s work deals with syn-
thesizing a transducer between synchronous as well as
asynchronous protocols from the corresponding timing
diagrams. Merge labels and ordering labels attached
at appropriate points of the event sequences on each
side of the transducer determine the order of execution
of the events in the transducer. Thus the sequence of
events in the inter-process communication is explicitly
marked with the effect that the all possible orderings



of events between the processes are not modeled.

Other existing formalisms that have been used to
model interface processes either have a notion of se-
quencing and primarily model asynchronous commu-
nication (basic Petri Nets, and path expressions [9])
or have a notion of sequencing but not timing and
model only synchronous communication (CCS [6]), or
model sequencing and timing but mainly model syn-
chronous communication (finite state machines [8]).
In this work, we use labelled transition systems in
which the labels are divided into two types input la-
bels and output labels, to model sequencing, typical
timing constraints such as minimum set-up and hold
times, deskew and decode times, asynchronous com-
munication (i.e., all possible event orderings) and syn-
chronous communication. Double synchronization of
the signals can also be modeled by introducing addi-
tional states in the LTS. In Section 2 we describe the
generation of the communicating process in detail.

The proposed LTS modeling and LTS product
are modifications to the parallel composition of syn-
chronous Moore machines, [4]. This work has been
used to model large synchronous systems to verify
their correctness by making assertions of safety and
liveness in temporal logic. But this cannot be di-
rectly applied to model communication between differ-
ent protocols as it requires that both machines jointly
make transitions at every clock step. When the proto-
cols are such that the two machines do not have corre-
sponding transitions then this composition results in
error states.

2 Proposed Approach

The two different interface protocols that need to
communicate with one another are specified by their
corresponding finite state machines. Each protocol
has an output side (the actions performed when the
interface is to a master device) and an input side (the
actions when the interface is to a slave device). The
signals from the output side are observable by the pro-
tocol converter, and the signals to the input side are
controllable by the protocol converter. All interface
{ransitions caused by internal signals are neither ob-
servahle nor controllable by the protocol converter.
Correct operation between the output side of one pro-
tocol and the input side of the second protocol requires
that the outputs and the inputs occur at the expected
times. A failure occurs if the first protocol produces
an output when the second protocol is not expecting
it. The problem is to synthesize the protocol converter
using the observable and controllable signals such that
the two interfaces together with the protocol converter
operate correctly. For example. consider an interface
to a four-phase protocol. and an interface to a two-
phase protocol that need to communicate with one
another. Figure 1 shows the timing diagrams of a four
phase protocol and a two phase protocol. It can be
seen that if these two interfaces were to be directly
connected then the two phase protocol interface be-
gins its second transaction even before the four phase
protocol interface has completed the first transaction
resulting in an error.

In this work the finite state machine part of the

411

Four Phase Protocol Two Phase Protocol
wied
L J ! z - |
" One Transaction One Transaction Next

Transaction

Figure 1: Timing diagrams of Two-phase and Four-
phase protocols

protocol converter is obtained similar to the product
of the general labelled transition systems (LTSs) [7].
Clearly this would result in a large number of states
even for simple LTSs. The product LTS is reduced by
four steps: firstly, a third LTS C which represents the
desired sequence of inter-operation between the inter-
faces is specified, and the product of the interface LTSs
is jointly obtained with the C machine. This is defined
below and illustrated by the powerset composition in
Figures 3, 4, and 5 in the example in Section 3. The
resulting LTS includes all the undesired sequences of
inter-operations as well. Therefore the second step is
to eliminate these undesired sequences. Further re-
duction is obtained by a third step, in which the tran-
sitions that are caused by signals not controllable by
the protocol converter are eliminated. The final step
consists in hiding signals unobservable by the protocol
converter. Since the protocol converter cannot observe
signals internal to each interface process, the transi-
tions caused by the internal signals are removed and
the corresponding present and next states are merged.
This hiding of the unobservable signals results in a de-
terminized LTS where the transitions are between sets
of states. The number of states in each state set can
be reasonably expected to be between 2 and 3, be-
cause the interface controller seldom performs exten-
sive data manipulation. This determinizing process
(hiding of unobservable signals) is shown in Figure 6
for the example in Section 3. The choice of transitions
in the determinized LTS is guided by progress in the
C machine.

A general LTS is a structure given by the four-
tuple%, i. L, Tran) where:

Sis a set of states with initial state ¢

Lis a set of labels,

that do not contain the symbol *’
Tran C

is the transition relation

To model the interfaces, the LTS labels are divided
into two types— input labels and output labels. The
transitions n the communicating process are gener-
ated by obtaining the product of the interface LTSs,
with the LTS of the C machine. The resuting product



includes all possibie interleavings of the transition la-
bels. Thus either machine singly making a transition
as well both machines jointly making a transition are
modeled.

Their product of two general LTSs is given next.
Let To and T; be two LTSs, their product Ty x T} is
defined below.

To = (50, ig, LO, TT'CL”())
Ty = (51,i1,L1,Trang)
ToxTh = (S4,L,Tran)
where
S = So X Sl
T = io X il,
Theprojections :
po = So xS — S5
pr = So X Sl — S]
L = LoxIL=
(a,%) | € Lo U
(*1 6) | /8 S Ll U
(af) | o € Loandf € Ly
withprojections
(s,a,8") € Tran. <

(PO(S)u 7"0(0’), PU(SIJ) € Trang.,and

{p18), m(a),;(s")) € Trani..

Trang., and Tran;. are transition relations includ-
ing the idle transition, where a idle transition (analo-
gous to a self-loop in FSMs) is given by (s,*,5) | s € S

Intuitively, this includes transitions with the labels
of the form a. § representing synchronizations between
two processes set in parallel, transitions with the labels
of the form *. # or a.. % representing transitions in only
one process, unsynchronized with the other process.
Clearly this composition results in an explosion in the
number of states, as all possible interleavings of the
labels are to be included. The C machine is given by
a LTS To. Any operation sequence not specified by
T+ results implicitly in an error state. The product
To x T1 x Ty is obtained and the illegal transitions
and transition not controllable by the communicating
process are eliminated.

Section 3 describes protocol converter generation.

3 Example

Figure 2 shows the LTS representation correspond-
ing to the protocols shown in Figure 1. The exleft’
interface is to a slave device following a two phase pro-
tocol. and the ‘exright’ interface is to master device
following a four phase protocol.

The LTS given by the exleft machine is:

Ty = (So,t0, Lo, Trang)
where

S = 0,1,2

g = 0

412

:=Req
a:=Ack
1 := infoin , infout

exleft

i}

Figure 2: LTS representation of Two-phase and Four-
phase protocols

01

1,12

1 2
02

2,1

Figure 3: Product of the two LTSs

LO =
Trang C

and the LTS given by

ay, ly.ry
So x Ly x So

the exright machine is:

Tl = (51.i1.£1.T7’0771)
where

Sy = 0.1.2.3.4

1'1 = 0

Ll = 7'f_r.13.Cl3
Trany C Sy xLi xS

Part of the result of step 1 of the product of exleft
and exright machines is given in Figure 3. Each clus-
ter represents a joint present state, possible interleav-
ings of transitions between the two machines. and the
possible joint next states. The remaining steps are
similar.

The C machine representing the correct inter-
operation between the two machines is given helow



((R1 A2)

(41 R2)

((((0 0 1) (102)) (R1 (2 02)))
(((202)) (R2 (212) (22 1)))

Figure 4: Correct inter-operation between the LTSs (((212) (221)) (42 (23 1))

(((231)) (a1 (031) (132)) (R2 (24 1))
(((031) (132)) (R2 (04 1) (142)) (R1 (23 2))
(((241)) (r1 (041) (142)) (a2 (201)))
(((0 4 1) (142)) (R1 (242)) (A2 (00 1) (102)
({((2 0 1)) (a1 (0 01) (10 2)))
(((2 4 2)) (a2 (2 0 2)))
(((232)) (R2 (2 4 2)))))

Figure 5: Part of the Product of exleft, exright and C
machines

in Figure 4.

The next states in the product machine from the
joint state 0,0,1 is shown below in Figure 5. The com-
plete product can be obtained in a similar manner.

All possible inter-process communication is ob-
tained by the product of exleft, exright, and the C ma-
chine. The reduction of the resulting LTS is obtained
by eliminating illegal transitions and transitions not
controllable by the communicating process. Signals ay
and ro are outputs of the communicating process. and
therefore are controllable. Signals ry, and as are in-
puts to the communicating process, and signals 13, la,
are internal to machines exleft and exright. Transition
conditions such as 1;,*¥1; and ls,* 15 represent condi-
tions where an internal transition is refiected by a cor-
responding transition in the C machine and therefore
represents a valid condition. Conditions such as Iy, *
and lo. where an internal transition was made but not
reflected by the C, machine are invalid. Therefore of
the possible states from the joint present state of 0,0,1
shown in Figure 5, the possible next states are 0.1,1
and 1.0,2. In a similar manner the complete product
can be reduced.

This reduced LTS includes transitions not visible
to the communicating process.

We have presented a new approach for synthesizing
thie communication process given the interface process
specification and illustrated the approach by generat-
ing the communication process between a four phase
master and a two phase slave. Work is currently un-
der way to synthesize coverters between popular back-
plaiie buses.

We would like to express our appreciation to Ed-
mund Clarke and David Long for the useful discussions
that helped to clarify the issues involved in interface
modeling and in protocol converter generation.

References
[1] D. Del Corso and H. Kirrmann and J. D. Nicoud,

413

Figure 6: Final Controller

Microcomputer Buses and Links, Academic Press,

1986.

J. Akella, ”Performance Modeling and Synthesis
of Inter-Process Communication Devices”, Ph.D
Thesis, Carnegie Mellon Universily, August 1991.

J. Nestor, ”Behavioral Synthesis with Interfaces”,
Digest of Technical Papers, IEEE International
Conference on Computer-Aided Design, 112-115,
November, 1986.

E. M. Clarke and D. E. Long and K. E. McMillan,
”Compositional Model Checking”, Proceedings of
the Fourth Annual Symposium on Logic in Com-
puter Science, 353-362, June, 1989.

P. E. Green, "Protocol Conversion”, IEEE Trans-
actions on Communications, 257-268, March,

1986.

R. Milner, A Calculus of Communicating Sys-
tems”, Lecture Notes on Computer Science,
Springer Verlag, Vol. 92, 1980.

G. Winskel, " A Compositional Proof System on a
Category of Labelled Transition Systems”, Com-
puter Science Depariment, Aarhus University, No.
DAIMI PB - 294, November, 1989.

M. A. Arbib, "Theories of Abstract Automata”,
Prentice-Hall, 1969.

J. L. Peterson, ” Petri Net Theory and the Mod-
eling of Systems”. Prentice-Hall Inc, 1981.

[10] G. Borriello, “Synthesis and Optimization of
Interface Transducer Logic”, Digest of Tech-
nical Papers, IEEE International Conference
on Computer-Aided Design, 274-277, November,
1987.



