
Automated Assumption Generation for
Compositional Verification

Anubhav Gupta K. L. McMillan Zhaohui Fu

Cadence Design Systems, Inc.

Abstract. We describe a method for computing a minimum-state au-
tomaton to act as an intermediate assertion in assume-guarantee reason-
ing, using a sampling approach and a Boolean satisfiability solver. For
a set of synthetic benchmarks intended to mimic common situations in
hardware verification, this is shown to be significantly more effective than
earlier approximate methods based on Angluin’s L* algorithm. For many
of these benchmarks, this method also outperforms BDD-based model
checking and interpolation-based model checking. We also demonstrate
how domain knowledge can be incorporated into our algorithm to im-
prove its performance.

1 Introduction

Compositional verification is a promising approach for alleviating the state-
explosion problem in model checking. This technique decomposes the verification
task for the system into simpler verification problems for the individual compo-
nents of the system. Consider a system M composed of two components M1 and
M2, and a property P that needs to be verified on M . The assume-guarantee
style for compositional verification uses the following inference rule:

〈true〉 M1 〈A〉
〈A〉 M2 〈P 〉

〈true〉 M1 ‖M2 〈P 〉
(1)

This rule states that P can be verified on M by identifying an assumption
A such that: A holds on M1 in all environments and M2 satisfies P in any
environment that satisfies A. For example, consider a system consisting of a
processor and memory unit, communicating over a bus. We want to prove that
an addition instruction on the system executes correctly. In order to prove this
property, we decompose this system into two components, M1 and M2, where
M1 consists of the bus and M2 consists of the processor and memory unit. We
identify an assumption about M1 which states that a data value x is read from
M1 if and only if x was written on M1. Using this assumption, we prove the two
antecedents of the assume-guarantee rule and this proves the property on M .
Since our assumption is much simpler than the component M1 itself, proving the
two antecedents is much easier than proving the property directly on M . There
are two key challenges to an assume-guarantee based verification strategy:

1. Identifying an appropriate decomposition of the system.
2. Identifying a simple assumption.

In this article, we presume that the system has been decomposed and we focus
on assumption identification.

In a language-theoretic framework, we model a process as a regular language,
specified by a finite automaton. Process composition is intersection of languages,
and a process satisfies a property P when its intersection with L(¬P), the set of
strings not satisfying P , is empty. The above inference rule can thus be written
as:

L(M1) ⊆ L(A)
L(A) ∩ L(M2) ∩ L(¬P) = ∅

L(M1) ∩ L(M2) ∩ L(¬P) = ∅
(2)

To simplify matters, we can use a satndard product construction to produce
an automaton M ′

2 such that L(M ′
2) = L(M2) ∩ L(¬P). That is, M ′

2 accepts all
the strings of M2 that do not satisfy property P . The problem of constructing
an assume-guarantee argument then amounts to finding an automaton A that
separates L(M1) and L(M ′

2), in the sense that L(A) accepts all the strings in
L(M1), but rejects all the strings in L(M ′

2). Clearly, we would like to find an
automaton A with as few states as possible, to minimize the state-explosion
problem in checking the antecedents of the assume-guarantee rule.

For deterministic automata, the problem of finding a minimum-state sep-
arating automaton is NP-complete. It is reducible to the problem of finding
a minimum-state implementation of an Incomplete Deterministic Finite Au-
tomaton (IDFA), shown to be NP-complete by Pfleeger [Pfl73]. To avoid this
complexity, Cobleigh et al. proposed a polynomial-time approximation method
[CGP03] based on a modification of Angluin’s L* algorithm [Ang87,RS89] for
active learning of a regular language. The primary drawback of this approach is
that there is no approximation bound. That is, in the worst case, the algorithm
will return one of the extremal solutions (either L(M1) or L(M ′

2)
c, depending

on the implementation). In this case there is no benefit in terms of state space
reduction that could not be obtained by determinizing and minimizing M1 or
M ′

2. Alur et al. [AMN05] have presented a symbolic implementation of this ap-
proach, which suffers from the same drawback. In fact, in our experiments with
hardware verification problems, the L*-based approach failed to produce a state
reduction for any of our benchmark problems.

In this paper, we argue that it may be worthwhile to solve the minimum-state
separating automaton problem exactly. Since the overall verification problem is
PSPACE-complete when M1 and M ′

2 are expressed symbolically, there is no
reason to require that the sub-problem of finding an intermediate assertion be
solved in polynomial time. The goal of assume-guarantee reasoning is a veri-
fication procedure that is singly exponerntial in |M1| and in |M ′

2|, but not in
|M1|+ |M ′

2|, where |M | denotes the textual size of M . If this is achieved, it may
not matter that the overall complexity is exponential in |A|, provided A is small.

With this rationale in mind, we present an exact approach to the minimum-
state separating automaton problem, suited to assume-guarantee reasoning for
hardware verification. We apply the sampling-based algorithm used by Pena
and Oliveira [PO99] for the IDFA minimization problem. This algorithm itera-
tively generates sample strings in L(M1) and L(M ′

2), computing at each step a
minimum-state automaton consistent with the sample set. Finding a minimum-
state automaton consistent with a set of labeled strings is itself an NP-complete
problem [Gol78], and we solve it using a Boolean Satisfiability (SAT) solver. We
use the sampling approach here because the standard techniques for solving the
IDFA minimization problem [KVBSV97] require explicit state representation,
which is not practical for hardware verification.

For hardware applications, we must also deal with the fact that the alphabet
is exponential in the number of Boolean signals connecting M1 and M ′

2. This
difficulty is also observed in L*-based approaches, where the number of queries
is proportional to the size of the alphabet. We handle this problem by learning
an automaton over a partial alphabet and generalizing to the full alphabet using
Decision Tree Learning [Mit97] methods.

The performance of our iterative algorithm depends on the number of sample
strings in L(M1) and L(M ′

2) that it requires to generalize to the minimum-state
separating automaton. We demonstrate how domain-specific properties of the
separating automaton can be incorporated into our algorithm to speed up its
convergence.

Using a collection of synthetic hardware benchmarks, we show that our ap-
proach is effective in producing minimum-state intermediate assertions in cases
where the approximate L* approach yields no reduction. In some cases, our
method also provides a substantial reduction in overall verification time com-
pared to direct model checking using state-of-the-art methods.

2 Preliminaries

2.1 Deterministic Finite Automaton

Definition 1. A Deterministic Finite Automaton (DFA) M is a tuple (S,Σ, s0, δ, F)
where: (1) S is a finite set of states, (2) Σ is a finite alphabet, (3) δ : S×Σ → S
is a transition function, (4) s0 ∈ S is the initial state, and (5) F ⊆ S is the set
of accepting states.

Definition 2. An Incomplete Deterministic Finite Automaton (IDFA) M is a
tuple (S,Σ, δ, s0, F,R) where: (1) S is a finite set of states, (2) Σ is a finite
alphabet, (3) δ : S ×Σ → (S ∪ {⊥}) is a partial transition function, (4) s0 ∈ S
is the initial state, (5) F ⊆ S is the set of accepting states, and (6) R ⊆ S is
the set of rejecting states.

Intuitively, an IDFA is incomplete because some states may not have outgoing
transitions for the complete alphabet, and some states are neither accepting nor
rejecting. If there is no transition from state s on symbol a then δ(s, a) = ⊥. For

both DFA’s and IDFA’s, we extend the transition function δ in the usual way
to apply to strings. That is, if π ∈ Σ∗ and a ∈ Σ then δ(s, πa) = δ(δ(s, π), a)
when δ(s, π) 6= ⊥ and δ(s, πa) = ⊥ otherwise.

A string s is accepted by a DFA M if δ(s0, s) ∈ F , otherwise s is rejected by
M . A string s is accepted by an IDFA if δ(q0, s) ∈ F . A string s is rejected by
an IDFA if δ(q0, s) ∈ R.

Given two languages L1, L2 ⊆ Σ∗, we will say that a DFA or IDFA separates
L1 and L2 when it accepts all strings in L1 and rejects all strings in L2. A
minimum-state separating automaton (MSA) for L1 and L2 is an automaton
with minimum number of states separating L1 and L2 (we will apply this notion
to either DFA’s or IDFA’s as the context warrants).

3 The L* approach

For comparison purposes, we first describe the L*-based approximation method
for learning separating automata [CGP03]. In the L* algorithm, a learner infers
the minimum-state DFA A for an unknown regular language L by posing queries
to a teacher. In a membership query, the learner provides a string π, and the
teacher replies yes if π ∈ L and no otherwise. In an equivalence query, the learner
proposes an automaton A, and the teacher replies yes if L(A) = L and otherwise
provides a counterexample. The counterexample may be positive (i.e., a string
in L \ L(A)) or negative (i.e., a string in L(A) \ L). Angluin [Ang87] gave an
algorithm for the learner that guarantees to discover A in a number of queries
polynomial in the size of A.

Cobleigh et al. [CGP03] modified this procedure to learn a separating au-
tomaton for two languages L1 and L2. Their procedure differs from the L* al-
gorithm in the responses provided by the teacher. In the case of an equivalence
query, the teacher responds yes if A is a separating automaton for L1 and L2.
Otherwise, it provides either a positive counterexample as a string in L1 \ L(A)
or a negative counterexample as a string in L2∩L(A). To a membership query on
a string π, the teacher responds yes if π ∈ L1 and no if π ∈ L2. If π is in neither
L1 nor L2, the correct choice is unknown, since the teacher does not know the
minimum-state separating automaton. One possible policy is to always answer
no in the unknown case. Thus, in effect, the teacher is asking the learner to learn
L1, but is willing to accept any guess that separates L1 and L2. Alternatively,
the teach can always answer yes in the unknown case. Under this policy, the
teacher is asking the learner to learn Lc

2, but is willing to accept any guess that
separates L1 and L2.

Using Angluin’s algorithm for the learner, we can show that the learned sep-
arating automaton A has no more states that the minimum-state deterministic
automaton for L1 (or alternatively Lc

2). This can, however, be arbitrarily larger
than the minimum-state separating automaton.

As in Angluin’s original algorithm, the number of queries is polynomial in
the size of A, and in particular, the number of equivalence queries is at most the
number of states in A. In the assume-guarantee application, L1 = L(M1) and

L2 = L(M ′
2). For hardware verification, M1 and M ′

2 are Non-deterministic Finite
Automata (NFA’s) represented symbolically (the non-determinism arising from
hidden inputs and from the construction of the automaton for ¬P). Answer-
ing a membership query is therefore NP-complete (essentially a bounded model
checking problem) while answer an equivalence query is PSPACE-complete (a
symbolic model checking problem).

We now consider the overall worst-case complexity of the approach using
symbolic representations. We will assume the version of the algorithm in which
the teach answers no for unknown queries (the other case is similar). The exe-
cution time of the algorithm includes both membership and equivalence queries.
The number of both of these is bounded by |A|, the final textual size of au-
tomaton A explicitly represented. The cost of testing membership of a string in
L(M1) is propertional to the length of the string and the numebr of states
in M1 (since M1 is non-deterministic). This gives a worst-case run time of
O((2|M1| + 2|M

′
2|)× (n+ |A|)× |A|) where n represents the length of the longest

counterexample produced by the teacher (and thus the length of the longest
membership query). In the worst case, |A| can be exponential in the number
of states of M1 (since it can be a determinization of M1). Thus it can be dou-
bly exponential in |M1|, the symbolic textual size of M1. Moreover, assuming
the teacher produces minimum-length counterexamples, n can be as large as |A|
times the number of states of M1 (alternatively M ′

2). Thus, the worst-case com-
plexity is actually much worse than simply computing the product of M1 and
M ′

2 (which is only singly exponential in |M1|+ |M ′
2|). The method only provides

an advantage when both |A| and n are small.

4 Computing the minimum-state separating automaton

To find an exact MSA for two languages L1 and L2, we will follow the general
approach of Pena and Oliveira [PO99] for minimizing IDFA’s. This is a learning
approach that uses only equivalence queries. It relies on a subroutine that can
compute a minimum-state DFA separating two finite sets of strings. Although
Pena and Oliveira’s work is limited to finite automata, the technique can be
applied to any languages L1 and L2 that have a regular separator, even if L1

and L2 are themselves not regular.
The overall flow of our LangMSA algorithm for computing an MSA for two
languages is shown in Algorithm 1. We maintain two sets of sample strings,
S1 ⊆ L1 and S2 ⊆ L2. The main loop begins by computing a minimum-state
DFA A that separates S1 and S2 (line 3), using the SatMSA algorithm de-
scribed below. The learner then performs an equivalence query on A (lines 4,5).
If A separates L1 and L2, the procedure terminates (line 6). Otherwise, we ob-
tain a counterexample string π from the teacher (lines 8,14). If π ∈ L1 (and
consequently, π 6∈ L(A)) we add π to S1 (line 12), else we add π to S2 (line 18).
This procedure is repeated until an equivalence query succeeds. In the figure, we
test first for a negative counterexample, and then for a positive counterexample.

Algorithm 1 Computing an MSA for two languages
LangMSA (L1, L2)
1: S1 = {}; S2 = {};
2: while (1) do
3: Let A be an MSA for S1 and S2;
4: if L1 ⊆ L(A) then
5: if L(A) ∩ L2 = ∅ then
6: return A; (A separates L1 and L2)
7: else
8: Let π ∈ L2 and π ∈ L(A); (negative counterexample)
9: if π ∈ L1 then

10: return false; (L1 and L2 are not disjoint)
11: else
12: S1 = S1 ∪ {π};
13: else
14: Let π ∈ L1 and π 6∈ A; (positive counterexample)
15: if π ∈ L2 then
16: return false; (L1 and L2 are not disjoint)
17: else
18: S2 = S2 ∪ {π};

This order is arbitrary, and in practice we choose the order randomly for each
query to avoid biasing the result towards L1 or L2.

The teacher in this procedure can be implemented using a model checker.
That is, the checks L1 ⊆ L(A) (line 4) and L(A) ∩ L2 = ∅ (line 5) are model
checking problems. In our application, L1 and L2 are the languages of symboli-
cally represented NFA’s, and we use symbolic model checking methods [McM93]
to perform the checks (note that testing containment in L(A) requires com-
plementing A, but this is straightforward since A is deterministic). The checks
π ∈ L1 (line 9) and π ∈ L2 (line 15) can be implemented using a bounded model
checker [BCCZ99], because the length of the counterexample is known.

Theorem 1. Let L1, L2 ⊆ Σ∗, for finite Σ. If L1 and L2 have a regular sepa-
rator, then Algorithm LangMSA terminates and outputs a minimum-state sep-
arating automaton for L1 and L2.

Proof. Let A′ be a minimum-state separating automaton for L1 and L2 with k
states. Since S1 ⊆ L1 and S2 ⊆ L2, it follows that A′ is also a separating automa-
ton for S1 and S2. Thus, A has no more than k states (since it is a minimum-state
separating automaton for S1 and S2). Thus, if the procedure terminates, A is a
minimum-state separating automaton for L1 and L2. Moreover, there are finitely
many DFA’s over finite Σ with k states. At each iteration, one such automaton
is ruled out as a separator of S1 and S2. Thus, the algorithm must terminate. 2

It now remains only to find an algorithm to compute a minimum-state separating
automaton for the finite languages S1 and S2 (line 3). This problem has been
studied extensively, and is known to be NP-complete [Gol78]. To solve it, we will
borrow from the approach of Oliveira and Silva [OS98].

Definition 3. An IDFA M = (S,Σ, s0, δ, F,R) is tree-like when the relation
{(s1, s2) ∈ S2 | ∃a. δ(s1, a) = s2} is a directed tree rooted at s0.

Given any two disjoint finite sets of strings S1 and S2, we can construct a tree-like
IDFA that accepts S1 and rejects S2, which we will call TreeSep(S1, S2).

Definition 4. Let S1, S2 ⊆ Σ∗ be disjoint, finite languages. The tree-like sep-
arator TreeSep(S1, S2) for S1 and S2 is the tree-like IDFA (S,Σ, s0, δ, F,R)
where S is the set of prefixes of S1∪S2, s0 is the empty string, F = S1, R = S2,
and δ(π, a) = πa if πa ∈ S else δ(π, a) = ⊥.

Definition 5. Let M = (S,Σ, s0, δ, F,R) and M ′ = (S′, Σ, s′0, δ
′, F ′, R′) be two

IDFA’s over alphabet Σ. The map φ : S → S′ is a folding of M onto M ′ when:

– φ(s0) = s′0,
– For all s ∈ S, a ∈ Σ, if δ(s, a) 6= ⊥ then φ(δ(s, a)) = δ′(φ(s), a),
– For all s ∈ F , φ(s) ∈ F ′, and
– For all s ∈ R, φ(s) ∈ R′.

Lemma 1. Let M = (S,Σ, s0, δ, F,R) and M ′ = (S′, Σ, s′0, δ
′, F ′, R′) be two

IDFA’s over alphabet Σ. Let φ : S → S′ be a folding of M onto M ′. Then, for
all t ∈ Σ∗, if δ(s0, t) 6= ⊥ then φ(δ(s0, t)) = δ′(φ(s0), t).

Proof. The proof follows directly by induction on the length of t.

The following theorem says that every separating IDFA for S1 and S2 can be
obtained as a folding of the tree-like automaton TreeSep(S1, S2).

Theorem 2. Let T = (S,Σ, s0, δ, F,R) be a tree-like IDFA, with accepting set
S1 and rejecting set S2. Then an IDFA A = (S′, Σ, s′0, δ

′, F ′, R′) over Σ is a
separating automaton for S1 and S2 if and only if there exists a folding φ from
T to A.

Proof. Suppose there exists a folding φ from T to A. Let s be a string in S1. Since
T accepts S1, δ(s0, s) ∈ F . Since φ is a folding from T onto A, φ(δ(s0, s) ∈ F ′.
Using Lemma 1, we get φ(δ(s0, s)) = δ′(s′0, s), which implies δ′(s′0, s) ∈ F ′. Thus,
A accepts s. Similarly, we can show that if s is a string in S2, then A rejects s.
Therefore, A is a separating automaton for S1 and S2.

Conversely, suppose A is a separating automaton for S1 and S2. We define
a function φ : S → S′ as φ(s) = δ′(s′0, s). Note that by Definition 4, each state
s ∈ S is a string in Σ∗. We now prove that φ is a folding from T onto A, by
showing that it satisfies the conditions specified in Definition 5.

– φ(s0) = δ′(s′0, s0) = s′0 since s0 is the empty string.
– Let s ∈ S, a ∈ Σ and δ(s, a) 6= ⊥. Then, by Definition 4, φ(δ(s, a)) = φ(sa).

Using the definition of φ, we get φ(δ(s, a)) = δ′(s′0, sa), which simplifies to
φ(δ(s, a)) = δ′(δ′(s′0, s), a) = δ′(φ(s), a)).

– Let s ∈ F . Then, s ∈ S1. Since A accepts S1, we get φ(s) = δ′(s′0, s) ∈ F ′.
– Let s ∈ R. Then, s ∈ S2. Since A rejects S2, we get φ(s) = δ′(s′0, s) ∈ R′.

2

Thus, to find a separating automaton A of k states, we have only to guess a
map from the states of TreeSep(S1, S2) to the states of A and construct A
accordingly. Now we will show how to construct a folding of the tree T by
partitioning its states. If Γ is a partition of a set S, we will denote by [s]Γ the
element of Γ containing element s of S.

Definition 6. Let M = (S,Σ, s0, δ, F,R) be an IDFA over Σ. A consistent
partition of M is a partition Γ of S such that

– for all s, t ∈ S, a ∈ Σ, if δ(s, a) 6= ⊥ and δ(t, a) 6= ⊥ and [s]Γ = [t]Γ then
[δ(s, a)]Γ = [δ(t, a)]Γ , and

– for all s ∈ F and t ∈ R, [s]Γ 6= [t]Γ .

Definition 7. Let M = (S,Σ, s0, δ, F,R) be an IDFA and let Γ be a consistent
partition of M . The quotient M/Γ is the IDFA (Γ,Σ, s′0, δ

′, A′, R′) such that

– s′0 = [s0]Γ ,
– δ′(s′, a) = t{[δ(s, a)]Γ | [s]Γ = s′},
– F ′ = {[s]Γ | s ∈ F}, and
– R′ = {[s]Γ | s ∈ R}.

In the above definition, t represents the least upper bound in the lattice with
partial order � ; containing the bottom element ⊥, the top element > and
the elements of Γ ; such that for all s, t ∈ Γ if s 6= t then s 6� t. Consistency
guarantees that the least upper bound is never >.

Theorem 3. Let T be a tree-like IDFA with accepting set S1 and rejecting set
S2. There exists an IDFA of k states separating S1 and S2 exactly when T has
a consistent partition Γ of cardinality k. Moreover, T/Γ separates S1 and S2.

Proof. Suppose Γ is a consistent partition of T . It follows that the function φ
mapping s to [s]Γ is a folding of T onto T/Γ . Thus, by Theorem 2, T/Γ is
separates S1 and S2, and moreover it has k states. Conversely, suppose A is an
IDFA of k states separating S1 and S2. By Theorem 2, there is a folding φ from
T to A. Using Definition 5, it can be shown that the partition induced by φ is
consistent and has (at most) k states. 2

According to Theorem 3, to find a minimum-state separating automaton for two
disjoint finite sets S1 and S2, we have only to construct a corresponding tree-like
automaton T , and then find the minimum-state consistent partition Γ of T . The
minimum-state separating automaton A is then T/Γ .

We use a SAT solver to find the minimum-state partition, using the following
encoding of the problem of existence of a consistent partition of k states. Let
n = dlog2ke. For each state s ∈ S, we introduce a vector of Boolean variables v̄s =
(v0

s . . . v
n−1
s). This represents the number of the partition to which s is assigned

(and also the corresponding state of the quotient automaton). We then construct
a set of Boolean constraints that guarantee that the partition is consistent. First,

for each s, we must have v̄s < k (expressed over the bits of v̄s). Then, for every
pair of states s and t that have outgoing transitions on symbol a, we have
a constraint v̄s = v̄t ⇒ v̄δ(s,a) = v̄δ(t,a) (that is, the partition must respect
the transition relation). Finally, for every pair of states s ∈ F and t ∈ R,
we have the constraint v̄s 6= v̄t (that is, a rejecting state and an accepting state
cannot be put in the same partition). We call this set of constraints SatEnc(T).
A truth assignment ψ satisfies SatEnc(T) exactly when the partition Γ =
{Γ0, . . . , Γk−1} is a consistent partition of T where Γi = {s ∈ S | v̄s = i}. Thus,
from a satisfying assignment, we can extract a consistent partition.

Algorithm 2 (SatMSA) outlines our approach for computing a minimum-
state separating automaton for two finite languages. Note that the quotient
automaton T/Γ is an IDFA. We can convert this to a DFA by completing the
partial transition function δ in any way we choose (for example, by making all
the missing transitions go to a rejecting state), yielding a DFA that separates
S1 and S2.

Algorithm 2 Computing an MSA for two finite languages, using SAT encoding
SatMSA (S1, S2)
1: Let T = TreeSep(S1, S2);
2: Let k = 1;
3: while (1) do
4: if SatEnc(T) is satisfiable then
5: Let ψ be a satisfying assignment of SatEnc(T);
6: Let Γ = {{s ∈ S | v̄s = i} | i ∈ 0 . . . k − 1};
7: Let A = T/Γ ;
8: Extend δ(A) to a total function;
9: return DFA A;

10: Let k = k + 1;

This completes the description of our LangMSA procedure for computing
an MSA for two languages L1 and L2. To find an intermediate assertion for
assume-guarantee reasoning, we have only to compute an MSA for L(M1) and
L(M ′

2).
Let us now consider the overall complexity of assume-guarantee reasoning

using the LangMSA algorithm (Algorithm 1). We will assume that M1 and M ′
2

are expressed symbolically as Boolean circuits with textual size |M1| and |M ′
2|

respectively. The number of states of these DFA’s is then O(2|M1|) and O(2|M
′
2|)

respectively. Let |A| be the textual size of the MSA (note that this is proportional
to both the number of states and the size of Σ). Each iteration of the main loop
involves solving the SAT problem SatEnc(T) and solving two model checking
problems. The SAT problem can, in the worst case, be solved by enumerating
all the possible DFA’s of the given size, and thus is O(2|A|). The model checking
problems are O(|A| × 2|M1|) and O(|A| × 2|M

′
2|). The number of iterations is at

most 2|A|, the number of possible automata, since each iteration rules out one
automaton. Thus the overall run time is O(2|A|(2|A| + |A| × (2|M1| + 2|M

′
2|))).

This is singly exponential in |A|, |M1| and |M ′
2|, but notably we do not incur

the cost of computing the product of M1 and M2. Fixing the size of A, we have
simply O(2|M1| + 2|M

′
2|).

Unfortunately, |A| is worst-case exponential in |M1|, since in the worst case
we have L(A) = L(M1). This means that the overall complexity is doubly ex-
ponential in the input size. It may seem illogical to apply a doubly exponential
algorithm to a PSPACE-complete problem. However, we will observe that in
practice, if there is a small intermediate assertion, this approach can be more
efficient than singly exponential approaches. In the case when the alphabet is
large, however, we will need some way to compactly encode the transition func-
tion.

5 Generalization with Decision Tree Learning

As mentioned earlier, in hardware verification, the size of the alphabet Σ is
exponential in the number of Boolean signals passing between M1 and M2. This
means that in practice the samples we obtain of L(M1) and L(M ′

2) can contain
only a minuscule fraction of the alphabet symbols. Thus, the IDFA A that we
learn will also contain transitions for just a small fraction of Σ. We therefore
need some way to generalize from this IDFA to a DFA over the full alphabet in a
reasonable way. This is not a very well-defined problem. In some sense we would
like to apply Occam’s razor, inferring the simplest total transition function that
is consistent with the partial transition function of the IDFA. There might be
many ways to do this. For example, if the transition from a given state on symbol
a is undefined in the IDFA, we could map it to the next state for the nearest
defined symbol, according to some distance measure.

The approach we take here is to use decision tree learning methods to try to
find the simplest generalization of the partial transition function as a decision
tree. Given an alphabet symbol, the decision tree branches on the values of the
Boolean variables that define the alphabet, and at its leaves gives the next state
of the automaton. We would like to find the simplest decision tree expressing
a total transition function consistent with the partial transition function of the
IDFA. Put another way, we can think of the transition function of any state
as a classifier, classifying the alphabet symbols according to which state they
transition to. The partial transition function can be thought of as providing
samples of this classification and we would like to find the simplest decision tree
that is consistent with these samples. Intuitively, we expect the intermediate
assertion to depend on only a small set of the signals exchanged between M1

and M2, thus we would like to bias the procedure toward transition functions
that depend on few signals. To achieve this, we use the ID3 method for learning
decision trees from examples [Qui86].

This allows us (line 8 of Algorithm 2) to generalize the IDFA to a symbolically
represented DFA that represents a guess as to what the full separating language
should be, based on the samples of the alphabet seen thus far. If this guess is

incorrect, the teacher will produce a counterexample that refutes it, and thus
refines the next guess.

6 Example

We illustrate the working of the SatMSA algorithm on an example. In this
example, we are trying to learn a separating automaton for two components
which communicate over 3 Boolean signals, namely x1, x2 and x3. The alphabet
Σ, which consists of all possible assignments to the interface signals, is equal
to {0, 1}3. Figure 1 shows the input sample sets S1 and S2 for the SatMSA
algorithm. Each alphabet symbol corresponds to an assignment to (x1, x2, x3).

(100)

(100)

(100) (010)

(010)

(100)

(001)

(010)

(100)

(100) (100)

(101)

(100)

Fig. 1. Sample sets S1 and S2 for the SatMSA algorithm.

Figure 2 shows T = TreeSep(S1, S2), the tree-like separator for S1 and S2.
SatEnc(T) (line 4) is unsatisfiable for k = 1, 2 and the SatMSA algorithm
finds a satisfying assignment to SatEnc(T) for k = 3. The partition number for
each state is shown in Figure 3.

1

2

3

7
8

95
6

4

(100)

(010)

(100)

(100)

(101)

(001)

(010)

(100)

Fig. 2. TreeSep(S1, S2), corresponding to the sample sets in Figure 1.

1

2

1

3
3

33
3

2

(100)

(010)

(100)

(100)

(101)

(001)

(010)

(100)

Fig. 3. The partitioned TreeSep(S1, S2).

1
2

3

(100)

(010)

(001) (100)

(101)

(010)

(100)

Fig. 4. The IDFA generated by SatMSA. State 1 is the initial state. States 1,2 are
accepting states while State 3 is a rejecting state.

The partitioning produces the IDFA shown in Figure 4. The sample sets for the
decision tree learner, corresponding to the transition functions of the 3 states,
are shown in Figure 5. Figure 5 also shows the decision trees generated by ID3.
Figure 6 shows the resulting complete DFA.

1

(100)

(010)

(001)

2

3

3

2

(010)

(100)

(101)

1

3

3

3 3(100)

x1

23

x2

13

3

Fig. 5. The sample sets for the decision tree learner, and the corresponding decision
trees.

7 Optimizations

We use two optimizations to the above approach that effectively reduce the size
of the search space when finding a consistent partition of T . First, we exploit
the fact that L(M1) is prefix closed in the case of hardware verification (on the
other hand L(M ′

2) may not be prefix closed, since it includes the negation of
the property P). This means that if string π is in the accepting set of T , we
can assume that all its prefixes are accepted as well. This allows us to mark the
ancestors of any accepting state of T as accepting, thus reducing the space of
consistent partitions. In addition, since M1 is prefix closed, it follows that there
is a prefix closed intermediate assertion and we can limit our search to prefix
closed languages. These languages can always be accepted by an automaton with
a single rejecting state. Thus, we can group all the rejecting states into a single
partition, again reducing the space of possible partitions.

Our second optimization is to compute the consistent partition incrementally.
We note that each new sample obtained as a counterexample from the teacher
adds one new branch to the tree T . In our first attempt to obtain a partition

1
2

3

x1 = 1

x1 = 0

x2 = 1

x2 = 0

Fig. 6. The separating automaton generated by SatMSA. State 1 is the initial state.
States 1,2 are accepting states while State 3 is a rejecting state.

we restrict all the pre-existing states of T to be in the same partition as in the
previous iteration. Only the partitions of the new states of T can be chosen. This
forces us, if possible, to maintain the old behavior of the automaton A for all
the pre-existing samples and to change only the behavior for the new sample. If
this problem is infeasible, the restriction is removed and the algorithm proceeds
as usual. Heuristically, this tends to reduce the SAT solver run time in finding a
partition, and also tends to reduce the number of samples, perhaps because the
structure of the automaton remains more stable.

8 Incorporating Domain Knowledge

If some domain-specific property of the separating automaton is known apriori, it
can be incorporated into the LangMSA algorithm to speed up the convergence.
In this paper, we experimented with two such properties, which we describe in
the following sections.

8.1 Stuttering Closure

Definition 8. A language L over Σ is said to be stuttering closed if for all
s1, s2 ∈ Σ∗, a in Σ, if s1as2 ∈ L, then s1(a+)s2 ∈ L.

It can be shown that if L is prefix closed and stuttering closed, it is accepted by
an automaton that satisfies the following property: if a state s has an incoming
transition on an alphabet symbol a, then the outgoing transition from s on a is a
self-loop. This property can be used to reduce the space of consistent partitions,
by adding additional constrains to SatEnc(T) (line 4 of Algorithm 2). The
constraints are formalized in the following Lemma.

Lemma 2. Let M = (S,Σ, s0, δ, F,R) be an IDFA over Σ. If Γ is a consistent
partition of M and M accepts a prefix closed and stuttering closed language,
then for all s, t ∈ S, a ∈ Σ, if δ(s, a) = s1 and δ(t, a) = t1, then:

– If [s1]Γ = [t]Γ , then [t]Γ = [t1]Γ .
– If [t1]Γ = [s]Γ , then [s]Γ = [s1]Γ .

In addition to reducing the space of consistent partitions, the stuttering closure
property can be used to prune repeating sequences of alphabet symbols from
the counterexample traces, before the traces are added to the sample sets. This
leads to a reduction in size of SatEnc(T).

8.2 Learning Multiple Decision Trees

If the separating automaton has k states, the transition function of each state is a
function that maps an assignment to the alphabet variables to one of the k states.
As described in Section 5, the motivation for generalization with a decision tree
is that it biases the learner towards transition functions that depend on only a
few alphabet variables. In our benchmarks, the transition function for a state s
depends on all of the alphabet variables. However, the transition from a state
s to a state t is predicated with a subset of the variables. In order to exploit
this property, we learn multiple decision trees to capture the transition function
of a state s, one tree for each possible next state t. Each decision tree classifies
the alphabet symbols into two classes, corresponding to whether or not they
transition to the corresponding next state. Since each transition is predicated
with only a subset of the variables, the decision tree for a transition is much
smaller than the decision tree for the full transition function, and is therefore
easier to learn. Moreover, the run-time complexity of learning multiple decision
trees is the same as learning a single decision tree. Therefore, our LangMSA
algorithm can potentially converge faster by learning multiple decision trees for
a state transition function.

9 Results

We have implemented our techniques on top of Cadence SMV [McM]. The user
specifies a decomposition of the system into two components. We use Cadence
SMV as our BDD-based model checker to verify the assumptions, and also as
our incremental BMC engine to check whether counterexamples are real. We
use an internally developed SAT solver. We implemented a variant of the ID3
[Qui86] algorithm to generate decision trees. We also implemented the L*-based
approach (Lstar) proposed by Cobleigh et al. [CGP03], using the optimized
version of the L* algorithm suggested by Rivest and Schapire [RS89]. All our
experiments were carried on a 3GHz Intel Xeon machine with 4GB memory,
running Linux. We used a timeout of 1000s for our experiments. We compared
our approach against Lstar, and the Cadence SMV implementation of standard
BDD-based model checking and interpolation-based model checking.

We generated two sets of benchmarks for our experiments. For all our bench-
marks, the property is true and all the circuit elements are essential for proving
the property. Therefore localization-based verification techniques will not be ef-
fective. These benchmark sets are representative of the following typical scenario.
A component of the system is providing a service to the rest of the system. The
system is feeding data into the component and is reading data from the compo-
nent. The verification task is to ensure that the data flowing through the system
is not corrupted. This property can be verified by using a very simple assump-
tion about the component, which essentially states that the component does not
corrupt the data.

xin xout Out = aIn = a
m

no o

Fig. 7. The shift-register based benchmark set.

Each circuit in the first benchmark set consists of a sequence of 3 shift-registers:
R1, R2 and R3, such that R1 feeds into R2 and R2 feeds into R3 (Figure 7). The
property that we want to prove is that we see some (fixed) symbol a at the output
of R3 only if it was observed at the input of R1. We varied the lengths and widths
of the shift-registers. Our results are shown in Table 1. For the circuit Sm n o,m is
the width of the shift-registers, n is the length of R2, and o is the length of R1 and
R3. In our decomposition, M1 consists of R2, and M2 consists of R1 and R3. We
compare our approach against Lstar. These benchmarks were trivial (almost 0
s runtime) for BDD-based and interpolation-based model checking. For Lstar,
we report the total running time (Time), the number of model checking calls
(Iters), the number of states in the assumption DFA (States), and the number
of membership queries (Queries). In case of a timeout, we report the number
of states, and queries made, for the last generated DFA. For our approach, we
report the total running time (Time), the number of model checking calls (Iters),
time spent in model checking (MC), maximum time spent in a model checking
run (Max), time spent in counterexample checks (Chk), and the number of states
in the assumption DFA (States). On this benchmark set, our approach clearly
outperforms Lstar both in the total runtime and in the size of the assumption
automaton. Our approach identifies the 3 state assumption, which says that a
can be seen at the output of M1 only if a has been inputted into M1 (Figure

8). Lstar only terminates on S1 6 3, where it learns the assumption of size 65,
which is the same as M1.

Circuit Lstar LangMSA

Time(s) Iters States Queries Time(s) Iters MC(s) Max(s) Chk(s) States

S1 6 3 362.61 90 65 16703 0.44 9 0.34 0.04 0.00 3

S1 8 4 (> 1000) 113 80 25358 0.45 9 0.31 0.04 0.00 3

S1 10 5 (> 1000) 107 76 23179 0.51 9 0.36 0.05 0.00 3

S2 6 3 (> 1000) 64 45 32444 1.20 27 0.99 0.04 0.01 3

S2 8 4 (> 1000) 62 43 29626 1.58 27 1.36 0.07 0.01 3

S2 10 5 (> 1000) 59 40 25639 1.87 27 1.57 0.08 0.01 3

S3 6 3 (> 1000) 35 24 35350 7.52 91 5.42 0.17 0.03 3

S3 8 4 (> 1000) 32 22 30997 14.36 90 10.46 0.27 0.03 3

S3 10 5 (> 1000) 29 21 26899 27.82 90 21.77 0.85 0.04 3

Table 1. Comparison of LangMSA against Lstar on shift-register based benchmarks.

1 2

3

xin = a

xout = a

xout ≠ a &
xin ≠ a

Fig. 8. The assumption DFA generated by LangMSA for our benchmarks. State 1 is
the initial state. States 1,2 are accepting states while State 3 is a rejecting state.

For the second benchmark set, we replaced the shift-registers with circular-
buffers. We also allowed multiple parallel circular-buffers in R2. Our results are
shown in Table 2. For the circuit Cm n o p, m is the width of the circular-buffers,
n is the number of parallel circular-buffers in R2, o is the length of the buffers
in R2, and p is the length of R1 and R3. We also report the total running time
(Time) of BDD-based model checking. Lstar and interpolation-based model
checking timed-out for all these benchmarks. On this benchmark set, our ap-
proach learns the smallest separating assumption and can scale to much larger
designs compared to Lstar, interpolation-based model checking and BDD-based
model checking.

Circuit BDD Lstar LangMSA

Time(s) Iters States Queries Time(s) Iters MC(s) Max(s) Chk(s) States

C1 1 6 3 23.46 26 78 22481 4.90 29 4.66 0.32 0.06 3

C1 1 8 4 160.08 26 78 22481 9.66 27 9.45 1.85 0.03 3

C1 1 10 5 (> 1000) 26 78 22481 11.42 33 10.97 1.32 0.09 3

C1 2 6 3 (> 1000) 26 57 16433 178.65 33 178.16 69.61 0.16 3

C2 1 6 3 (> 1000) 20 30 26893 47.20 128 43.88 3.98 0.10 3

C2 1 8 4 (> 1000) 20 30 26893 162.82 102 161.77 20.91 0.06 3

C2 1 10 5 (> 1000) 20 30 26893 829.46 152 826.55 126.76 0.20 3

C3 1 6 3 (> 1000) 16 12 33802 721.94 427 664.44 23.60 0.24 3

Table 2. Comparison of LangMSA against BDD-based model checking and Lstar
on circular-buffer based benchmarks.

Table 3 and Table 4 show the results of incorporating domain knowledge into the
LangMSA algorithm for the two benchmark sets. In these tables, LangMSAs
corresponds to LangMSA with the stuttering closure assumption, LangMSAm
learns multiple decision trees for a transition function, and LangMSAsm as-
sumes stuttering closure and learns multiple decision trees. The addition of do-
main knowledge reduces the number of iterations on most of the benchmarks.
There are some benchmarks on which this is not the case. This happens be-
cause the number of iterations is also sensitive to the specific counterexample
generated by the model checker.

Circuit LangMSA LangMSAs LangMSAm LangMSAsm

Time(s) Iters Time(s) Iters Time(s) Iters Time(s) Iters

S1 6 3 0.44 9 0.94 7 0.47 9 0.97 7

S1 8 4 0.45 9 1.06 7 0.46 9 0.92 7

S1 10 5 0.51 9 0.64 7 0.46 9 0.67 7

S2 6 3 1.20 27 2.83 21 0.69 15 1.34 11

S2 8 4 1.58 27 3.26 21 0.83 15 1.40 11

S2 10 5 1.87 27 3.05 21 0.90 15 1.48 11

S3 6 3 7.52 91 14.94 81 1.54 26 1.96 16

S3 8 4 14.36 90 29.18 83 2.32 26 2.01 16

S3 10 5 27.82 90 46.00 83 3.04 26 2.26 16

Table 3. Effect of adding domain knowledge to LangMSA on shift-register based
benchmarks.

Our approach generates the smallest assumption DFA for a verification proof
based on assume-guarantee reasoning. However, if the property is false, no such

Circuit LangMSA LangMSAs LangMSAm LangMSAsm

Time(s) Iters Time(s) Iters Time(s) Iters Time(s) Iters

C1 1 6 3 4.90 29 2.36 25 3.23 36 2.48 15

C1 1 8 4 9.66 27 5.00 27 2.72 20 4.25 15

C1 1 10 5 11.42 33 5.93 26 4.51 19 4.17 18

C1 2 6 3 178.65 33 170.21 25 164.93 26 148.70 15

C2 1 6 3 47.20 128 29.47 97 12.20 56 6.48 27

C2 1 8 4 162.82 102 75.51 119 12.40 47 54.57 118

C2 1 10 5 829.46 152 174.78 103 88.04 50 21.62 44

C3 1 6 3 721.94 427 564.67 371 40.04 100 32.56 82

Table 4. Effect of adding domain knowledge to LangMSA on circular-buffer based
benchmarks.

assumption DFA exists. In this case, our approach will eventually identify a
counterexample to the property. However, a drawback of our algorithm is that it
does not provide any bounds on the size of the DFA that it will generate before
it identifies the counterexample.

10 Conclusion and Future Work

We have presented an automated approach for assume-guarantee reasoning that
generates the smallest assumption DFA. Our experiments indicate that this tech-
nique can outperform existing L*-based approaches for computing an assumption
automaton that is not guaranteed to be minimum-state. For many of our bench-
marks, our approach performed better than state-of-the-art non-compositional
methods as well. We also illustrated how domain knowledge can be incorporated
into our algorithm.

There are many directions for future research. Some of the questions that we
want to answer are: (1) Our framework only uses equivalence queries. Can mem-
bership queries be used for enhancing our technique? (2) Which generalization
techniques (besides decision tree learning) would be effective in our framework?
(3) Can we learn a parallel composition of DFAs?

References

[AMN05] Rajeev Alur, P. Madhusudan, and Wonhong Nam. Symbolic compositional
verification by learning assumptions. In Proceedings of the International
Conference on Computer Aided Verification (CAV), pages 548–562, 2005.

[Ang87] D. Angluin. Learning regular sets from queries and counterexamples. In-
formation and Computation, 75:87–106, 1987.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model check-
ing without BDDs. In In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’99), LNCS, 1999.

[CGP03] J. Cobleigh, D. Giannakopoulou, and C. Pasareanu. Learning assump-
tions for compositional verification. In Proceedings of the 9th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2003.

[Gol78] E. Mark Gold. Complexity of automaton identification from given data.
Information and Computation, 37:302–320, 1978.

[KVBSV97] T. Kam, T. Villa, R. Brayton, and A. L. Sangiovanni-Vincentelli. Syn-
thesis of FSMs: Functional Optimization. Kluwer Academic Publishers,
1997.

[McM] K. L. McMillan. Cadence SMV. Cadence Berkeley Labs, CA.
[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

Boston, 1993.
[Mit97] Tom M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.
[OS98] Arlindo L. Oliveira and Joao P. Marques Silva. Efficient search tech-

niques for the inference of minimum size finite automata. In Proceedings of
the Symposium on String Processing and Information Retrieval (SPIRE),
pages 81–89, 1998.

[Pfl73] C. F. Pfleeger. State reduction in incompletely specified finite state ma-
chines. IEEE Transactions on Computers, C-22:1099–1102, 1973.

[PO99] Jorge M. Pena and Arlindo L. Oliveira. A new algorithm for exact reduc-
tion of incompletely specified finite state machines. IEEE Transactions on
CAD of Integrated Circuits and Systems, 18(11):1619–1632, 1999.

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1986.
[RS89] R. L. Rivest and R. E. Schapire. Inference of finite automata using homing

sequences. In Proceedings of the ACM Symposium on Theory of Computing
(STOC), pages 411–420, New York, NY, USA, 1989. ACM Press.

