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Abstract—Various verification techniques for temporal prop-
erties transform temporal verification to safety verification.
For infinite-state systems, these transformations are inherently
imprecise. That is, for some instances, the temporal property
holds, but the resulting safety property does not. This paper
introduces a mechanism for tackling this imprecision. This
mechanism, which we call temporal prophecy, is inspired by
prophecy variables. Temporal prophecy refines an infinite-state
system using first-order linear temporal logic formulas, via a
suitable tableau construction. For a specific liveness-to-safety
transformation based on first-order logic, we show that using
temporal prophecy strictly increases the precision. Further-
more, temporal prophecy leads to robustness of the proof
method, which is manifested by a cut elimination theorem.
We integrate our approach into the Ivy deductive verification
system, and show that it can handle challenging temporal
verification examples.

1. Introduction
There are various techniques in the literature that trans-

form the problem of verifying liveness of a system to the
problem of verifying safety of a different system. These
transformations compose the system with a device that has
the known property that some safety condition σ implies
liveness. The classical example of this is proving termination
of a while loop with a ranking function. In this case, the
device evaluates a chosen function r on loop entry, where
the range of r is a well-founded set. The safety property σ
is that r decreases at every iteration, which implies that the
loop must terminate.

A related transformation, due to Armin Biere [5], applies
to finite-state (possibly parameterized) systems. The safety
property σ is, in effect, that no state occurs twice, from
which we can infer termination. In the infinite-state case,
this can be generalized using a function f that projects the
program state onto a finite set. We can think of this as a
ranking that tracks the set of unseen values of f and is
ordered by set inclusion. However, the property that no value
of f occurs twice is simpler to verify, since the composed
device can non-deterministically guess the recurring value.
In general, the effectiveness of a liveness-to-safety transfor-
mation depends strongly on the difficulty of the resulting
safety proof problem.

Other methods can be seen as instances of this general
approach. For example, the Terminator tool [11] might be
seen as combining the ranking and the finite projection

approaches. Another approach by Fang et al. applies a
collection of ad-hoc devices with known safety-to-liveness
properties to prove liveness of parameterized protocols [16].
Of greatest interest here, a recent paper by Padon et al. uses
a dynamically chosen finite projection that depends on a
finite prefix of the system’s execution [30]. The approach
of [28] also has some similar characteristics.

In the case of infinite-state systems, these transforma-
tions from liveness verification to safety verification are not
precise reductions. That is, while safety implies liveness, a
counterexample to the safety property σ does not in general
imply a counterexample to liveness. For example, in the
projection method, a terminating infinite-state system may
have runs whose length exceeds the finite range of any
chosen projection f , forcing some value to repeat.

In this paper, we show that the precision of a liveness-
to-safety transformation can be usefully increased by the
addition of prophecy variables. These variables are ex-
pressed as first-order LTL formulas. For example, suppose
we augment the state of the system with a variable r�p
that tracks the truth value of the proposition �p, which is
true when p holds in all future states. We can soundly add
two constraints to the transition system. To the transition
relation, we add r�p ↔ (p∧ r�p′), where r�p′ denotes the
value of the prophecy variable in the post-state. We also add
the fairness constraint that r�p ∨ ¬p holds infinitely often.
These constraints are typical of tableau constructions that
convert a temporal formula to a symbolic automaton. As we
show in this paper, the additional information they provide
refines the trace set of the transformed system, potentially
eliminating false counterexamples.

In particular, we will show how to integrate tableau-
based prophecy with the liveness-to-safety transformation
of [30] that uses a history-based finite projection, referred
to as dynamic abstraction. We show that the precision of
this transformation is consequently increased. The result is
that we can prove properties that otherwise would not be
directly provable using the technique.

This paper makes the following contributions:

1) Introduce the notion of temporal prophecy, includ-
ing prophecy formulas and prophecy witnesses, via
a first-order LTL tableau construction.

2) Show that temporal prophecy increases the proof
power (i.e., precision) of the safety-to-liveness
transformation based on dynamic abstraction, and
further show that the properties provable with tem-



idle wait/ m=n++

[m>s] /

critical[m≤s] / q=*

[q=0] / s++

[q>0] / q--global nat s, n
local nat m, q

Figure 1. The ticket mutual exclusion protocol. Edges are labeled by
condition / action.

poral prophecy are closed under first-order reason-
ing, with cut elimination as a special case.

3) Integrate the liveness-to-safety transformation
based on dynamic abstraction and temporal
prophecy into the Ivy deductive verification
system, deriving the prophecy formulas from
an inductive invariant provided by the user (for
proving the safety property).

4) Demonstrate the effectiveness of the approach on
some challenging examples that cannot be handled
by the transformation without temporal prophecy.

5) Demonstrate that prophecy witnesses can eliminate
quantifier alternations in the verification conditions
generated for the safety problem obtained after the
transformation, facilitating decidable reasoning.

2. Illustrative Example
We illustrate our approach using the ticket protocol

for ensuring mutual exclusion with non starvation among
multiple threads, depicted in Fig. 1. The ticket protocol may
be run by any number of threads, and also allows dynamic
spawning of threads. The protocol is an idealized version
of spinlocks used in the Linux kernel [13]. In the protocol,
each thread can be in one of three states: idle, waiting to
enter the critical section, or in the critical section. The right
to enter the critical section is determined by a ticket number.
A global variable n, records the next available ticket, and a
global variable s, records the ticket currently being served.
Each thread has a local variable m that records the ticket it
holds. A thread only enters the critical section when m ≤ s.
Once a thread enters the critical section, it handles tasks
that accumulated in its task queue, and stays in the critical
section until its queue is empty (tasks are only added to
the queue when the thread is outside the critical section). In
Fig. 1, this is modeled by the task counter q, a thread-local
variable which is non-deterministically set when a thread
enters the critical section (to account for the unbounded,
but finite, number of tasks), and is then decremented in each
step. When q = 0 the thread leaves the critical section, and
increments s to allow other threads to be served.

The protocol is designed to satisfy the following first-
order temporal property:

(∀x.�♦scheduled(x))→ ∀y.� (wait(y)→ ♦critical(y))

That is, if every process is scheduled infinitely often, then
every waiting process eventually enters its critical section.
(Note that we encode fairness assumptions as part of the
temporal property.)

Insufficiency of liveness-to-safety transformations. While
the temporal property is clearly satisfied by the ticket pro-
tocol, proving it is challenging for liveness-to-safety trans-
formations. First, due to the unbounded values obtained
by the ticket number and the task counter, and also due
to dynamic spawning of threads, this example does not
belong to the class of parameterized systems [32], where a
simple lasso argument is sound (and complete) for proving
liveness. Second, while using a finite abstraction can recover
soundness, no fixed finite abstraction is precise enough to
show the absence of a lasso-shaped counterexample in this
example. The reason is that a thread can go to the waiting
state (wait) with any number of threads waiting “ahead of
it in line”.

For cases where no finite abstraction is sufficiently pre-
cise to prove liveness, we may instead apply the liveness-
to-safety transformation of [30]. This transformation relaxes
the requirement of proving absence of lassos over a fixed
finite abstraction, and instead requires one to prove absence
of lassos over a dynamic finite abstraction that is only
determined after some prefix of the trace (allowing for better
precision). Soundness is maintained since the abstraction is
still finite. Technically, the technique requires to prove that
no abstract lasso exists, where an abstract lasso is a finite
execution prefix that (i) visits a freeze point, at which a
finite projection (abstraction) of the state space is fixed, (ii)
the freeze point is followed by two states that are equal in
the projection. We refer to these as the repeating states, and
(iii) all fairness constraints are visited both before the freeze
point and between the repeating states.

Unlike fixed finite abstractions, dynamic abstractions
allow us to prove that an eventuality holds if there is a
finite upper bound on the number of steps required at the
time the eventuality is asserted (the freeze point). The bound
need not be fixed a priori. Unfortunately, due to the non-
determinism introduced by the task counter q, each of the
k threads ahead of t in line could require an unbounded
number of steps to leave the critical section, and this number
is not yet determined when t makes its request. As a result,
there is an abstract lasso which freezes the abstraction when
t makes its request, after which some other thread t0 enters
the critical section and loops, decrementing its task counter
q. Since the value of the task counter of t0 is not captured in
the abstraction, the loop does not change the abstract state.
This spurious abstract lasso prevents this liveness-to-safety
transformation from proving the property.

Temporal prophecy to the rescue. The key to fixing this
problem is to predict the future to the extent that a bound on
the steps required for progress is determined at the freeze
point. Surprisingly, this is accomplished by the use of one
temporal prophecy variable corresponding to the truth value
of the following formula:

∃x.♦�critical(x).

If this formula is initially true, there is some thread t0 that
eventually enters the critical section and stays there. At this
point, we can prove it eventually exits (a contradiction)



because the number of steps needed for this is bounded
by the current task counter of t0. Operationally, the freeze
point is delayed until �critical(x) holds at which point
t0’s task counter is captured in the finite projection, ruling
out an abstract lasso. On the other hand if the prophecy
variable is initially false, then all threads are infinitely often
out of the critical section. With this fairness constraint,
thread t requires only a finite number of steps to be served,
determined by the number of threads with lesser tickets.
Operationally, the extra fairness constraint extends the lasso
loop until the abstract state must change, ruling out an
abstract lasso.

Though the liveness-to-safety transformation via dy-
namic abstraction and abstract lasso detection cannot han-
dle the problem as given, introducing suitable temporal
prophecy eliminates the spurious abstract lassos. Some spu-
rious lassos are eliminated by postponing the freeze point,
thus refining the finite abstraction, and others are eliminated
by additional fairness constraints on the lasso loop. This
example is explained in greater detail in § 4.3.

3. Preliminaries
In this section, we present the first-order formalism for

specifying infinite-state systems and their properties, as well
as a tableau construction for first-order LTL formulas.

3.1. Transition Systems in First-Order Logic

A first-order logic transition system is a triple (Σ, ι, τ),
where Σ is a first-order vocabulary that contains only
relation symbols and constant symbols (functions can be
encoded by relations), ι is a closed formula over Σ defining
the set of initial states, and τ is a closed formula over Σ]Σ′,
where Σ′ = {`′ | ` ∈ Σ}, defining the transition relation.
The constants in Σ represent the program variables.

A state of the transition system is a first-order structure,
s = (D, I), over Σ, where D denotes the (possibly infinite)
domain of the structure and I denotes the interpretation
function. The set of initial states is the set of all states s
such that s |= ι, and the set of transitions is the set of
all pairs of states (s, s′) with the same domain such that
(s, s′) |= τ . In the latter, (s, s′) denotes a structure over
the vocabulary Σ ] Σ′ with the same domain as s and s′

in which the symbols in Σ are interpreted as in s, and the
symbols in Σ′ are interpreted as in s′.

For a state s = (D, I) over Σ, and for D ⊆ D, we
denote by s|D the partial structure by projecting s to D, i.e.,
s|D = (D, I|D), where I|D interprets only constants c ∈ Σ
for which I(c) ∈ D (making it a partial interpretation),
and for every relation symbol r ∈ Σ of arity k, I|D(r) =
I(r) ∩ Dk. For a vocabulary Σ′ ⊆ Σ, we denote by s|Σ′

the state over Σ′ obtained by restricting the interpretation
function to the symbols in Σ′, i.e., s|Σ′ = (D, I ′), where
for every symbol ` ∈ Σ′, I ′(`) = I(`).

A (finite or infinite) trace of (Σ, ι, τ) is a sequence of
states π = s0, s1, . . . where s0 |= ι and (si, si+1) |= τ for
every 0 ≤ i < |π|. Every state along the trace has its own

interpretation of the constant and relation symbols, but they
all share the same domain.

We note that first-order transition systems are Turing-
complete. Furthermore, tools such as Ivy [31] provide mod-
eling languages that are closer to imperative programming
languages and compile to a first-order transition system.
This makes it easier for a user to provide a first-order
specification of the transition system they wish to verify.

Safety. Given a vocabulary Σ, a safety property P is a set
of sequences of states over Σ, such that for every sequence
of states π 6∈ P , there exists a finite prefix π′ of π, such
that π′ and all of its extensions are not in P . A transition
system over Σ satisfies P if all of its traces are in P .

3.2. First-Order Linear Temporal Logic (FO-LTL)

To specify temporal properties of first-order transition
systems we use First-Order Linear Temporal Logic (FO-
LTL), which combines LTL with first-order logic [1]. For
simplicity, we consider only the “globally” (�) temporal
operator. The tableau construction extends to other operators
as well, and so does our approach.

Syntax. Given a first-order vocabulary Σ, FO-LTL for-
mulas are defined by:

f ::= r(t1, . . . , tn) | t1 = t2 | ¬f | f1 ∨ f2 | ∃x.f | �f
t ::= c | x

where r is an n-ary relation symbol in Σ, c is a constant
symbol in Σ, x is a variable, each ti is a term over Σ and �
denotes the “globally” temporal operator. We also use the
standard shorthand for the “eventually” temporal operator:
♦f = ¬�¬f , and the usual shorthands for logical operators
(e.g., ∀x.f = ¬∃x.¬f ).

Semantics. FO-LTL formulas over Σ are interpreted over
infinite sequences of states (first-order structures) over Σ.
Atomic formulas are interpreted over states, the temporal
operators are interpreted as in traditional LTL, and first-
order quantifiers are interpreted over the shared domain D
of all states in the trace. Formally, the semantics is defined
w.r.t. an infinite sequence of states π = s0, s1, . . . and an
assignment σ that maps variables to D— the shared domain
of all states in π. We define πi = si, si+1, . . . to be the suffix
of π starting at index i. The semantics is defined as follows.

π, σ |= r(t1, . . . , tn)⇔ s0, σ |= r(t1, . . . , tn)

π, σ |= t1 = t2 ⇔ s0, σ |= t1 = t2

π, σ |= ¬ψ ⇔ π, σ 6|= ψ

π, σ |= ψ1 ∨ ψ2 ⇔ π, σ |= ψ1 or π, σ |= ψ2

π, σ |= ∃x.ψ ⇔ exists d ∈ D s.t. π, σ[x 7→ d] |= ψ

π, σ |= �ψ ⇔ forall i ≥ 0, πi, σ |= ψ

When the formula has no free variables, we omit σ. A first-
order transition system (Σ, ι, τ) satisfies a closed FO-LTL
formula ϕ over Σ if all of its traces satisfy ϕ.



3.3. Tableau for FO-LTL
As part of our liveness-to-safety transformation, we

use a standard tableau construction for FO-LTL formulas
that results in a first-order transition system with fairness
constraints. Unlike the classical construction, we define
the tableau for a set of formulas, not necessarily a single
temporal formula.

For an FO-LTL formula ϕ, we denote by sub(ϕ) the set
of subformulas of ϕ, defined in the usual way. In the sequel,
we consider a finite set A of FO-LTL formulas that is closed
under subformulas, i.e. for every ϕ ∈ A, sub(ϕ) ⊆ A. Note
that A may contain formulas with free variables.
Definition 1 (Tableau vocabulary). Given a finite set A

as above over a first-order vocabulary Σ, the tableau
vocabulary for A, denoted ΣA, is obtained from Σ by
adding a fresh relation symbol r�ϕ of arity k for every
formula �ϕ ∈ A with k free variables.

Recall that � is the only primitive temporal operator we
consider (a similar construction can be done for other opera-
tors). The symbols added in ΣA will be used to “label” states
by temporal subformulas that are satisfied by all outgoing
fair traces. To translate temporal formulas over Σ to first-
order formulas over ΣA we use the following definition.
Definition 2. For a FO-LTL formula ϕ ∈ A (over Σ), its

first-order representation, denoted FO [ϕ], is a first-order
formula over ΣA, defined inductively, as follows.

FO [ϕ] = ϕ if ϕ = r(t1, . . . , tn) or ϕ = t1 = t2

FO [�ψ(x)] = r�ψ(x)(x)

FO [¬ψ] = ¬FO [ψ]

FO [ψ1 ∨ ψ2] = FO [ψ1] ∨ FO [ψ2]

FO [∃x.ψ] = ∃x.FO [ψ]

Note that FO [ϕ] has the same free variables as ϕ. We can
now define the tableau for A as a transition system.
Definition 3 (Tableau transition system). The tableau tran-

sition system for A is the first-order transition system
TA = (ΣA, true, τA), where τA (defined over ΣA]ΣA

′)
is defined as follows:

τA =
∧

�ϕ∈A

∀x. (r�ϕ(x)↔ (FO [ϕ(x)] ∧ r�ϕ′(x))).

Note that the original symbols in Σ (and Σ′) are not
constrained by τA, and may change arbitrarily with each
transition. However, the r�ϕ relations are updated in accor-
dance with the property that π, σ |= �p iff s0, σ |= p and
π1, σ |= �p (where s0 is the first state of π and p is a
first-order formula over Σ).
Definition 4 (Fairness). A sequence of states π = s0, s1, . . .

over ΣA is A-fair if for every temporal formula �ϕ(x) ∈
A and for every assignment σ, there are infinitely many
i’s for which si, σ |= FO [�ϕ(x) ∨ ¬ϕ(x)].

Note that �ϕ(x) ∨ ¬ϕ(x), used above, is equivalent to
♦¬ϕ(x) → ¬ϕ(x). So the definition of fairness ensures
an eventuality cannot be postponed forever. In the sequel,

the set A is always clear from the context (e.g., from the
vocabulary), hence we omit it and simply say that π is fair.

The next claims summarize the properties of the tableau;
Lemma 1 states that the FO-LTL formulas over Σ that
hold in the outgoing traces of a tableau state correspond
to the first-order formulas over ΣA that hold in the state;
Lemma 2 states that every sequence of states over Σ has
a representative trace in the tableau; finally, Thm. 1 states
that a transition system satisfies a FO-LTL formula iff its
product with the tableau of the negated formula has no fair
traces.
Lemma 1. In a fair trace π = s0, s1, . . . of TA (over ΣA), for

every FO-LTL formula ψ(x) ∈ A, for every assignment
σ and for every index i ∈ N, we have that si, σ |=
FO [ψ(x)] iff πi, σ |= ψ(x).

Lemma 2. Every infinite sequence of states ŝ0, ŝ1, . . . over
Σ can be extended to a fair trace π = s0, s1, . . . of TA
(over ΣA) s.t. for every i ∈ N, si|Σ = ŝi.

Definition 5 (Product system). Given a transition system
TS = (Σ, ι, τ), a closed FO-LTL formula ϕ over Σ, a
finite set A of FO-LTL formulas over Σ closed under
subformulas such that ¬ϕ ∈ A, we define the product
system of TS and ¬ϕ over A as the first-order transition
system TP = (ΣP , ιP , τP ) given by ΣP = ΣA, ιP =
ι∧FO [¬ϕ] and τP = τ∧τA, where TA = (ΣA, true, τA)
is the tableau for A.

Theorem 1. Let TP be the product system of TS and ¬ϕ
over A as defined in Def. 5. Then TS |= ϕ iff TP has
no fair traces.

Intuitively, the product system augments the states of
TS with temporal formulas from A, splitting each state into
many (often infinitely many) states according to the future
behavior of its outgoing traces. Note that Thm. 1 holds
already when A = sub(¬ϕ). However, as we will see, taking
a larger set A is useful for proving fair termination via the
liveness-to-safety transformation.

4. Liveness-to-Safety with Temporal Prophecy
In this section we present our liveness proof approach

using temporal prophecy and a liveness-to-safety transfor-
mation. As in earlier approaches, our transformation (i)
uses a tableau construction to construct a product transition
system equipped with fairness constraints such that the latter
has no fair traces iff the temporal property holds of the
original system, and (ii) defines a safety property over the
product transition system such that safety implies that no
fair traces exist (note that the opposite direction does not
hold).

The gist of our liveness-to-safety transformation is that
we augment the construction of the product transition system
with two forms of prophecy detailed in § 4.2. We then
use the definition of the safety property from [30]. In the
sequel, we first present the safety property and then present
the augmentation with temporal prophecy, whose goal is to
“refine” the product system such that it will be safe.



4.1. Safety Property: Absence of Abstract Lassos
Given a transition system TW = (ΣW , ιW , τW ) with

ΣW ⊇ ΣA (e.g., the product system from Def. 5), we define
a notion of an abstract lasso, whose absence is a safety
property that implies that TW has no A-fair traces. This
section recapitulates material from [30].

The definition of an abstract lasso is based on a dynamic
abstraction that is fixed at some point along the trace,
henceforth called the freeze point. The abstraction function
is defined by projecting a state (a first-order structure) into
a finite subset of its domain. This finite subset is defined
by the union of the footprints of all states encountered until
the freeze point, where the footprint of a state includes the
interpretation it gives all constants from ΣW . Intuitively,
the footprint includes all elements “exposed” in the state,
including those “touched” by outgoing transitions.
Definition 6 (Footprint). For a state s = (D, I) over ΣW ,

we define the footprint of s as f(s) = {I(c) | c ∈ ΣW }.
For a sequence of states π = s0, s1, . . . over ΣW , and
an index i < |π|, we define the footprint of s0, . . . , si
as f(s0, . . . , si) =

⋃i
j=0 f(sj).

Importantly, the footprint of a finite trace is always finite.
As a result, an abstraction function that maps each state to
the result of projecting it to the footprint of the trace until
the freeze point has a finite range.
Definition 7 (Fair Segment). Let π = s0, s1, . . . be a

sequence of states over ΣW . For 0 ≤ i ≤ j < |π|,
we say the segment [i, j] is fair if for every formula
�ψ(x) ∈ A, and for every assignment σ where every
variable is assigned to an element of f(s0, . . . , si), there
exists i ≤ k ≤ j s.t. sk, σ |= FO [(�ψ(x)) ∨ ¬ψ(x)].

Definition 8 (Abstract Lasso). A finite trace s0, . . . , sn of
TW is an abstract lasso if there are 0 ≤ i ≤ j <
k ≤ n s.t. the segments [0, i] and [j, k] are fair, and
sj |f(s0,...,si) = sk|f(s0,...,si).

Intuitively, in the above definition, i is the freeze point,
where the abstraction is fixed. The states sj and sk are the
“repeating states” – states that are indistinguishable by the
abstraction that projects them to the footprint f(s0, . . . , si).
The segment between j and k, respectively, the segment
between 0 and i, meet all the fairness constraints restricted
to elements in f(s0, . . . , sj), respectively, in f(s0). Fairness
of the segment [0, i] is needed to prevent the freeze point
from being chosen too early, thus creating spurious abstract
lassos. Note that the absence of abstract lassos is a safety
property.
Lemma 3. If TW has no abstract lassos then it also has no

fair traces.

Proof: Assume to the contrary that TW has a fair
trace π = s0, s1, . . .. Let i be the first index such that [0, i]
is fair (such an index must exist since the set f(s0), which
determines the relevant fairness constraints is finite). Since
f(s0, . . . , si) is also finite, there must exist an infinite subse-
quence π′ of πi such that for every s, s′ in this subsequence
s|f(s0,...,si) = s′|f(s0,...,si). Let j ≥ i be the index in π of

the first state in π′. f(s0, . . . , sj) is also finite, hence there
exists k′ > j such that the segment [j, k′] of π is fair. Take
k to be the index in π of the first state of πk

′
that is also in

π′. Since π′ is infinite, such a k must exist. Since k ≥ k′,
the segment [j, k] is also fair. This defines an abstract lasso
s0, . . . , si, . . . , sj , . . . , sk, in contradiction.

4.2. Augmenting the Transition System with Tem-
poral Prophecy

In this section we explain how our liveness-to-safety
transformation constructs TW = (ΣW , ιW , τW ), to which
we apply the safety property of § 4.1. Our construction
exploits both temporal prophecy formulas and prophecy
witnesses, explained below. For the rest of this section we
fix a first-order transition system TS = (Σ, ι, τ) and a closed
FO-LTL formula ϕ over Σ that we wish to verify in TS .

Temporal Prophecy Formulas. First, given a set A of
(not necessarily closed) FO-LTL formulas closed under sub-
formula that contains ¬ϕ, we construct the product system
TP = (ΣP , ιP , τP ) defined in Def. 5. By Thm. 1, TS |= ϕ
iff TP has no fair traces. Note that classical tableau con-
structions are defined with A = sub(¬ϕ), and we allow A
to include more formulas. These formulas act as “temporal
prophecy variables” in the sense that they split the states of
TS , according to the future behavior of outgoing traces.

While the liveness-to-safety transformation is already
sound with A = sub(¬ϕ), one of the chief observations
of this work is that temporal prophecy formulas improve
its precision. These additional formulas in A split the states
of TS into more states in TP , and they cause some non-
determinism of the future trace to be “pulled backwards”
(the outgoing traces contain less non-determinism). For
example, if r�ϕ holds for some elements in the current
state, then ϕ must continue to hold for these elements in
the future of the trace. Similarly, for elements where r�ϕ
does not hold, there will be some time in the future of the
trace where ϕ would not hold for them.

This is exploited by the liveness-to-safety transformation
in three ways, eliminating spurious abstract lassos. First,
having more temporal formulas in A refines the definition
of a fair segment, and postpones the freeze point, thus
making the abstraction defined by the footprint up to the
freeze point more precise. For example, if r�ϕ does not
hold for a ground formula ϕ in the initial state, then the
freeze point would be postponed until after ϕ does not hold
for the first time. Second, it strengthens the requirement on
the looping segment sj . . . sk, in a similar way. Third, the
additional relations in ΣP (= ΣA) are part of the state as
considered by the transformation, and a difference in these
relations (projected to the footprint up to the freeze point)
is a valid difference. These three ways all played a role in
the examples considered in our evaluation.

Prophecy Witnesses. The notion of an abstract lasso,
used to define the safety property, considers a finite ab-
straction according to the footprint, which depends on the
constants of the vocabulary. To increase the precision of the



abstraction, we augment the vocabulary with fresh constants
that serve as prophecy witnesses for existential properties.

To illustrate the idea, consider the formula ψ(x) =
♦�p(x) where x is a free variable. If ψ holds for some
element, it is useful to include in the vocabulary a constant
that serves as a witness for ψ(x), and whose interpretation
will be taken into account by the abstraction. If ψ holds for
some x, the interpretation of the constant will be taken from
such an x. Otherwise, this constant will be allowed to take
any value.

Temporal prophecy witnesses not only refine the abstrac-
tion, they can also be used in the inductive invariant. In
particular, as demonstrated in the TLB Shootdown example
(see § 6), in some cases this allows to avoid quantifier
alternation cycles in the verification conditions, leading to
decidability of VC checking.

Formally, given a set B ⊆ A, we construct TW =
(ΣW , ιW , τW ) as follows. We extend ΣP to ΣW by
adding fresh constant symbols c1, . . . , cn for every formula
ψ(x1, . . . , xn) ∈ B. We denote by C the set of new
constants, i.e., ΣW = ΣP ∪ C. The transition relation
formula is extended to keep the new constants unchanged,
i.e. τW = τP ∧

∧
c∈C c = c′, and we define ιW by

ιW = ιP ∧ FO [(∃x1, . . . , xn.ψ(x1, . . . , xn))→ ψ(c1, . . . , cn)]

Namely, c1, . . . , cn are required to serve as witnesses for
ψ(x1, . . . , xn) in case it holds in the initial state for some
elements, and otherwise they may get any interpretation
at the initial state, after which their interpretation remains
unchanged. Adding these fresh constants and their defining
formulas to the initial state is a conservative extension, in
the sense that every fair trace of TP can be extended to a fair
trace of TW (fairness of traces over ΣW ⊇ ΣA is defined
as in Def. 4), and every fair trace of TW can be projected
to a fair trace of TP . As such we have the following:
Lemma 4. Let TP = (ΣP , ιP , τP ) and TW = (ΣW , ιW , τW )

be defined as above. Then TP has no fair traces iff TW
has no fair traces.

The overall soundness of the liveness-to-safety transfor-
mation is given by the following theorem.
Theorem 2 (Soundness). Given a first-order transition

system TS and a closed FO-LTL formula ϕ both over Σ,
and given a set of temporal prophecy formulas A over
Σ that contains ¬ϕ and is closed under subformula, and
a set of temporal prophecy witness formulas B ⊆ A, if
TW as defined above does not contain an abstract lasso,
then TS |= ϕ.

4.3. The Ticket Example

In this section we show in greater detail how prophecy
increases the power of the liveness-to-safety transformation.
As an illustration we return to the ticket example of Fig. 1.
As explained in § 2, in this example the liveness-to-safety
transformation without temporal prophecy fails (similarly to
[30, §5.2]), but it succeeds when adding suitable temporal
prophecy.

To model the ticket example as a first-order transition
system, we use a vocabulary with two sorts: thread and
number. The first represents threads, and the second repre-
sents ticket values and counter values. The vocabulary also
includes a static binary relation symbol ≤: number, number,
with suitable first-order axioms to make it a total order. (for
more details about modeling systems in first-order logic see
e.g. [31].) The state of the system is modeled by unary re-
lations for the program counter: idle,wait, critical, constant
symbols of sort number for the global variables n, s, and
functions from thread to number for the local variables m, c.
The vocabulary also includes a unary relation scheduled,
which holds the last scheduled thread.

Next we show that when adding the temporal prophecy
formula ∃x.♦�critical(x) to the tableau construction, no ab-
stract lasso exists in the augmented transition system, hence
the liveness-to-safety transformation succeeds to prove the
property. Formally, in this case, A includes the following
two formulas and their subformulas:

¬ ((∃x.¬�¬�¬scheduled(x)) ∨ ¬∃x.¬� (¬wait(x) ∨ ¬�¬critical(x)))
∃x.¬�¬�critical(x)

And B = {¬� (¬wait(x) ∨ ¬�¬critical(x)) , ¬�¬�critical(x)}.
Therefore, ΣW extends the original vocabulary with the
following 6 unary relations:

r�¬scheduled(x), r�¬�¬scheduled(x), r�¬critical(x),

r�¬wait(x)∨¬�¬critical(x), r�critical(x), r�¬�critical(x)

as well as two constants for prophecy witnesses:
c1 for ¬� (¬wait(x) ∨ ¬�¬critical(x)), and c2 for
¬�¬�critical(x).

We now explain why there is no abstract lasso. To do
this, we show that the tableau construction, combined with
the dynamic abstraction and the fair segment requirements,
result in the same reasoning that was presented informally
in § 2.

First, observe that from the definition of c1
and the negation of the liveness property (both
assumed by ιW ), we have that the initial state
s0 |= FO [¬� (¬wait(c1) ∨ ¬�¬critical(c1))]. For
brevity, denote p = (¬wait(c1) ∨ ¬�¬critical(c1)),
so we have s0 |= FO [¬�p], i.e., s0 |= ¬r�p.
Since c1 is also in the footprint of the initial state,
the fair segment requirement ensures that the freeze
point can only happen after encountering a state
satisfying: FO [(�p) ∨ ¬p] ≡ r�p ∨ FO [¬p]. Recall
that the transition relation of the tableau (τA), ensures
(r�p)↔ (FO [p]∧ r�p′). Therefore, on update from a state
satisfying ¬r�p to a state satisfying r�p can only happen
if the pre-state satisfies FO [¬p]. Therefore, the freeze
point must come after encountering a state that satisfies
FO [¬p] ≡ wait(c1) ∧ r�¬critical(c1). From the freeze point
onward, τA will ensure both r�¬critical(c1) and ¬critical(c1)
continue to hold, so c1 will stay in wait (since the protocol
does not allow to go from wait to anything but critical).
So, we see that the mechanism of the tableau, combined
with the temporal prophecy witness and the fair segment
requirement, ensures that the freeze point happens after c1



makes a request that is never granted. This will ensure that
the footprint used for the dynamic abstraction will include
all threads ahead of c1 in line, i.e., those with smaller ticket
numbers.

As for c2, the initial state will either sat-
isfy FO [¬�¬�critical(c2)] or it would satisfy
FO [¬∃x.¬�¬�critical(x)]. In the first case, by an
argument similar to the one used above for c1, the freeze
point will happen after c2 enters the critical section and then
stays in it. Therefore, the footprint used for the dynamic
abstraction will include all numbers smaller than q of c2
when it enters the critical section1. Since c2 is required to
be scheduled between the repeating states (again by the
tableau construction and the fair segment requirement), its
value for q will be decreased, and this will be visible in the
dynamic abstraction. Thus, in this case, an abstract lasso is
not possible.

In the second case the initial state satisfies
FO [¬∃x.¬�¬�critical(x)]. By a similar argument
that combines the tableau with the fair segment requirement
for the repeating states, we will obtain that between the
repeating states, any thread in the footprint of the first
repeating state, must both be scheduled and visit a state
outside the critical section. In particular, this includes all
threads that are ahead of c1 in line. This entails a change
to the program counter of one of them (the one that had
a ticket number equal to the service number at the first
repeating state), which will be visible in the abstraction.
Thus, an abstract lasso is not possible in this case either.

5. Closure Under First-Order Reasoning

The transformation from temporal verification to safety
verification developed in § 4 introduces an abstraction, and
incurs a loss of precision. That is, for some systems and
properties, liveness holds but the safety of the resulting
system does not hold, no matter what temporal prophecy
is used. (This is unavoidable for a transformation from
arbitrary FO-LTL properties to safety properties [30].) How-
ever, in this section, we show that the set of instances for
which the transformation can be made precise (via temporal
prophecy) is closed under first-order reasoning. This is
unlike the transformation of [30]. It shows that the use of
temporal prophecy results in a particular kind of robustness.

We consider a proof system in which the above trans-
formation is performed and the resulting safety property is
checked by an oracle. That is, for a transition system TS
and a temporal property ϕ (a closed FO-LTL formula), we
write TS ` ϕ if there exist finite sets of FO-LTL formulas
A and B satisfying the conditions of Thm. 2, such that
resulting transition system TW is safe, i.e., does not contain
an abstract lasso. We now show that the relation ` satisfies
a powerful closure property.

1. When modeling natural numbers in first-order logic, the footprint is
adjusted to include all numbers lower than any constant (still being a finite
set).

Theorem 3 (Closure under first-order reasoning). Let TS
be a transition system, and ψ,ϕ1, . . . , ϕn be closed FO-
LTL formulas, such that FO [ϕ1 ∧ . . . ∧ ϕn] |= FO [ψ].
If TS ` ϕi for all 1 ≤ i ≤ n, then TS ` ψ.

The condition that FO [ϕ1 ∧ . . . ∧ ϕn] |= FO [ψ] means
that ϕ1 ∧ . . . ∧ ϕn entails ψ when using only first-order
reasoning, and treating temporal operators as uninterpreted.
The theorem states that provability using the liveness-to-
safety transformation is closed under such reasoning. Two
special cases of Thm. 3 given by the following corollaries:

Corollary 1 (Modus Ponens). If TS is a transition system
and ϕ and ψ are closed FO-LTL formulas such that TS `
ϕ and TS ` ϕ→ ψ, then TS ` ψ.

Corollary 2 (Cut). If TS is a transition system and ϕ and
ψ are closed FO-LTL formulas such that TS ` ϕ → ψ
and TS ` ¬ϕ→ ψ, then TS ` ψ.

Proof of Thm. 3: In the proof we use the no-
tation TW (TS , ϕ,A,B) to denote the transition system
constructed for TS and ϕ when using A,B as temporal
prophecy formulas. Likewise, we refer to the vocabulary,
initial states and transition relation formulas of the tran-
sition system as ΣW (TS , ϕ,A,B), ιW (TS , ϕ,A,B), and
τW (TS , ϕ,A,B), respectively. Let (A1, B1), . . . , (An, Bn)
be such that TW (TS , ϕi, Ai, Bi) has no abstract lasso, for
every 1 ≤ i ≤ n. Now, let A =

⋃n
i=1Ai and B =

⋃n
i=1Bi.

We show that TW (TS , ψ,A,B) has no abstract lasso. As-
sume to the contrary that s0, . . . , si, . . . , sj , . . . , sk, . . . , sn
is an abstract lasso for TW (TS , ψ,A,B). Since s0 |=
ιW (TS , ψ,A,B), we know that s0 |= ¬FO [ψ], and since
FO [ϕ1 ∧ . . . ∧ ϕn] |= FO [ψ], there must be some 1 ≤ ` ≤
n s.t. s0 |= ¬FO [ϕ`]. Denote Σ′ = ΣW (TS , ϕ`, A`, B`).
Now, s0|Σ′ , . . . , si|Σ′ , . . . , sj |Σ′ , . . . , sk|Σ′ , . . . , sn|Σ′ is an
abstract lasso of TW (TS , ϕ`, A`, B`), which is a con-
tradiction. To see that, we first simplify the notation
and denote sm|Σ′ by ŝm. The footprint f(s0, . . . , si)
contains more elements than the footprint f(ŝ0, . . . , ŝi),
since ΣW (TS , ψ,A,B) ⊇ ΣW (TS , ϕ`, A`, B`). Therefore,
given that sj |f(s0,...,si) = sk|f(s0,...,si), we have that
ŝj |f(ŝ0,...,ŝi) = ŝk|f(ŝ0,...,ŝi) as well. Moreover, the fair-
ness constraints in TW (TS , ϕ`, A`, B`), determined by A`,
are a subset of those in TW (TS , ψ,A,B)), determined
by A, so the segments [0, i] and [j, k] are also fair in
TW (TS , ϕ`, A`, B`).

The proof of Thm. 3 sheds more light on the power of
using temporal prophecy formulas that are not subformulas
of the temporal property to prove. In particular, the theorem
does not hold if A is restricted to subformulas of the
temporal proof goal.

6. Implementation & Evaluation

We have implemented our approach for temporal veri-
fication and integrated it into the Ivy deductive verification
system [31]. This allows the user to model the transition
system in the Ivy language (which internally translates into



a first-order transition system), and express temporal prop-
erties directly in FO-LTL. In our implementation, the safety
property that results from the liveness-to-safety transforma-
tion is proven by a suitable inductive invariant, provided by
the user. To facilitate this process, Ivy internally constructs a
suitable monitor for the safety property, i.e., the absence of
abstract lasso’s in TW . The user then provides an inductive
invariant for TW composed with this monitor. The monitor
keeps track of the footprint and the fairness constraints, and
non-deterministically selects the freeze point and repeated
states of the abstract lasso. Similar to the construction of [5],
the monitor keeps a shadow copy of the “saved state”,
which is the first of the two repeated states. These are
maintained via designated relation symbols (in addition to
ΣW ). The user’s inductive invariant must then prove that it
is impossible for the monitor to detect an abstract lasso.

Mining Temporal Prophecy from the Invariant. As pre-
sented in previous sections, our liveness-to-safety transfor-
mation is parameterized by sets of formulas A and B. In
the implementation, these sets are implicit, and are extracted
automatically from the inductive invariant provided by the
user. Namely, the inductive invariant provided by the user
contains temporal formulas, and also prophecy witness con-
stants, where every temporal formula �ϕ is a shorthand (and
is internally rewritten to) r�ϕ. The set A to be used in the
construction is defined by all the temporal subformulas that
appear in the inductive invariant (and all their subformulas),
and the set B is defined according to the prophecy witness
constants that are used in the inductive invariant.

In particular, the user’s invariant may refer to the
satisfaction of each fairness constraint FO [�ϕ ∨ ¬ϕ] for
�ϕ ∈ A, both before the freeze point and between the
repeated states, via a convenient syntax provided by Ivy.

Interacting with Ivy. If the user provides an inductive
invariant that is not inductive, Ivy presents a graphical
counterexample to induction. This guides the user to adjust
the inductive invariant, which may also lead to new formulas
being added to A or B, if the user adds new temporal formu-
las or prophecy witnesses to the inductive invariant. In this
process, the user’s mental image is of a liveness-to-safety
transformation where A and B include all (countably many)
FO-LTL formulas over the system’s vocabulary, so the user
is free to use any temporal formula, or prophecy witness for
any formula. However, since the user’s inductive invariant is
a finite formula, the liveness-to-safety transformation needs
only to be applied to finite A and B, and the infinite A and
B are just a mental model.

We have used our implementation to prove liveness for
several challenging examples, summarized in Fig. 2. We fo-
cused on examples that were beyond reach for the liveness-
to-safety transformation of [30]. In [30], such examples were
handled using a nesting structure. Our experience shows
that with temporal prophecy, the invariants are simpler than
with a nesting structure (for additional comparison with
nesting structure see § 7). For all examples we considered,
the verification conditions are in a decidable fragment of
first-order logic which is supported by Z3 (the stratified

Protocol # A # B # LOC # C FO-LTL t [sec]
Ticket w/ Task Queues 1 2 90 60 22% 9.4
Alternating Bit Protocol 4 1 143 70 40% 32
TLB Shootdown 6 3 468 102 49% 283

Figure 2. Protocols for which we verified liveness. For each protocol, # A
reports the number of temporal prophecy formulas used. # B reports the
number of prophecy witnesses used. # LOC reports the number of lines
of code for the system model (without proof) in Ivy’s modeling language.
# C reports the number of conjectures used in the inductive invariant (a
typical conjecture is one or few lines). FO-LTL reports the fraction of
the conjectures that use temporal formulas. Finally, t reports the run time
(in seconds) for checking the verification conditions using Ivy and Z3.
The experiments were performed on a laptop running 64-bit Linux, with a
Core-i7 1.8 GHz CPU, using Z3 version 4.6.0.

extension of EPR [19], [31]). Interestingly, for the TLB
shootdown example, the proof presented in [30] (using a
nesting structure) required non-stratified quantifier alterna-
tion, which is eliminated by the use of temporal prophecy
witnesses. Due to the decidability of verification conditions,
Z3 behaves predictably, and whenever the invariant is not
inductive it produces a finite counterexample to induction,
which Ivy presents graphically. Our experience shows that
the graphical counterexamples provide valuable guidance
towards finding an inductive invariant, and also for coming
up with temporal prophecy formulas as needed. Below we
provide more detail on each example.

Ticket. The ticket example has been discussed in § 1, and
§ 4.3 contains more details about its proof with temporal
prophecy, using a single temporal prophecy formula and
two prophecy witness constants. To give a flavor of what
the proof looks like in Ivy, we present a couple of the
conjectures that make up the inductive invariant for the
resulting system, in Ivy’s syntax. In Ivy, the prefix l2s
indicates symbols that are introduced by the liveness-to-
safety transformation. Some conjectures are needed to state
that the footprint used in the dynamic abstraction contains
enough elements. An example of such a conjecture is:

l2s_frozen & (globally critical(c2)) ->
forall N. N <= q(c2) -> l2s_a(N)

This conjecture states that after the freeze point (indicated
by the special symbol l2s_frozen), if the prophecy
witness c2 (which is the prophecy witness defined for
♦�critical(x)) is globally in the critical section, then the
finite domain of the frozen abstraction (stored in the unary
relation l2s_a) contains all numbers up the c2’s value for
q. Other conjectures are needed to show that the current
state is different from the saved state. One example is:

l2s_saved & (globally critical(c2)) &
˜($l2s_w X. scheduled(X))(c2) ->

q(c2) ˜= ($l2s_s X. q(X))(c2)

The special operator $l2s_w lets the user query whether
a fairness constraint has been encountered, and $l2s_s
exposes to the user the saved state (both syntactically λ-
like binders). This conjecture states that after we saved a
shadow state (indicated by l2s_save), if the prophecy
witness c2 is globally in the critical section, and if we



have encountered the fairness constraints associated with
scheduled(x) ∨�¬scheduled(x) instantiated for c2 (which
can only happen after c2 has been scheduled), then the
current value c2 has for q is different from the same value
in the shadow state.

Alternating Bit Protocol. The alternating bit protocol is a
classic communication algorithm for transition of messages
using lossy first-in-first-out (FIFO) channels. The protocol
uses two channels: a data channel from the sender to the
receiver, and an acknowledgment channel from the receiver
to the sender. The sender and the receiver each have a state
bit, and messages include a bit that functions as a “sequence
number”. We assume that the sender has an (infinite) array of
values to send, which is filled by some independent process.
The liveness property we wish to prove is that every value
entered into the sender array is eventually received by the
receiver.

The protocol is live under fair scheduling assumptions,
as well as standard fairness constraints for the channels:
if messages are infinitely often sent, then messages are
infinitely often received. This makes the structure of the
temporal property more involved. Formally, the liveness
property we prove is:

(�♦sender scheduled) ∧ (�♦receiver scheduled)∧
((�♦data sent) → (�♦data received))∧
((�♦ack sent) → (�♦ack received)) →
∀x.�(sender array(x) 6= ⊥ → ♦receiver array(x) 6= ⊥))

This property cannot be proven without temporal prophecy.
However, it can be proven using 4 temporal prophecy formu-
las: {♦� (sender bit = s ∧ receiver bit = r) | s, r ∈ {0, 1}}.
Intuitively, these formulas make a distinction between traces
in which the sender and receiver bits eventually become
fixed, and traces in which they change infinitely often.

TLB Shootdown. The TLB shootdown algorithm [6] is
used (e.g. in the Mach operating system) to maintain consis-
tency of Translation Look-aside Buffers (TLB) across pro-
cessors. When some processor (dubbed the initiator) changes
the page table, it interrupts all other processors currently
using the page table (dubbed the responders) and waits for
them to receive the interrupt before making changes. The
liveness property we prove is that no processor can become
stuck either as an initiator or as a responder (formally, it will
respond or initiate infinitely often). This liveness depends
on fair scheduling assumptions, as well as strong fairness
assumptions for the page table locks used by the protocol.
We use one witness for the process that does not satisfy the
liveness property. Another witness is used for a pagemap
that is never unlocked, if this exists. A third witness is used
for a process that possibly gets stuck while holding the lock
blocking the first process. We use six prophecy formulas
to case split on when some process may get stuck. Two of
them are used for the two loops in the initiator to distinguish
the cases whether the process that hogs the lock gets stuck
there. They are of the form ♦�pc(c2) ∈ {i3, . . . , i8}. Two
are used for the two lock instructions to indicate that the
first process gets stuck: ♦�pc(c1) = i2. And two are used

for the second and third witness to indicate whether such
a witness exists, e.g., ♦�plock(c3). Compared to the proof
of [30], our proof is simpler due to the temporal prophecy,
and avoids non-stratified quantifier alternation, resulting in
decidable verification conditions.

7. Related Work

Prophecy variables were first introduced in [2], in the
context of refinement mappings. There, prophecy variables
are required to range over a finite domain to ensure sound-
ness. Our notion of prophecy via first-order temporal for-
mulas and witness constants does not meet this criterion,
but is still sound as assured by Thm. 2. In [25], LTL
formulas are used to define prophecy variables in a way
that is similar to ours, but only to show refinement between
finite-state processes. We use temporal prophecy defined by
FO-LTL formulas in the context of infinite-state systems.
Furthermore, we consider a liveness-to-safety transformation
(rather than refinement mappings), which can be seen as a
proof system for FO-LTL.

The liveness-to-safety transformation based on dynamic
abstraction, but without temporal prophecy, was introduced
in [30]. There, a nesting structure was used to increase the
power of the transformation. A nesting structure is defined
by the user (via first-order formulas), and has the effect
of splitting the transition system into levels (analogous to
nested loops) and proving each level separately. Temporal
prophecy as we introduce here is more general, and in
particular, any proof that is possible with a nesting struc-
ture, is also possible with temporal prophecy (by adding
a temporal prophecy formula ♦�δ for every nesting level,
defined by δ). Moreover, the nesting structure does not admit
cut elimination or closure under first-order reasoning, and
is therefore less robust.

One effect of prophecy is to split cases in the proof on
some aspect of the future. This very general idea occurs
in various approaches to liveness, particularly in the large
body of work on lexicographic or disjunctive rankings for
termination [4], [7], [8], [11], [12], [14], [18], [20], [21],
[23], [26], [27], [33], [34], [35], [36], [37], [38]. In the
work of [22], the partitioning of the space of potentially
infinite executions is based on the a priori decomposition
of regular expressions for iterated loop segments. Often
the partitioning here amounts to a split according to a
fairness condition (“command a is taken infinitely often or
it is not”). The partitioning is constructed dynamically (and
represented explicitly through a union of Buchi automata)
in [24] (for termination), in [15] (for liveness), and in [17]
(for liveness of parameterized systems). None of these works
uses a temporal tableau construction to partition the space
of futures, however.

Here, we use prophecy to, in effect, partially determinize
a system by making non-deterministic choices earlier in
an execution. This same effect was used for a different
purpose in refining an abstraction from LTL to ACTL [10]
and checking CTL* properties [9]. The prophecy in this
case relates only to the next transition and is not expressed



temporally. The method of “temporal case splitting” in [29]
can also be seen as a way to introduce prophecy variables to
increase the precision of an abstraction, though in that case
the transformation was to finite-state liveness, not infinite-
state safety. Moreover, it only introduces temporal witnesses.

We have considered only proof methods that transform
liveness to safety (which includes the classical ranking
approach for while loops). There are approaches, however,
which do not transform liveness to safety. For example,
the approaches in [3], [14], [39] are essentially forms of
widening in a CTL-style backwards fixpoint iteration. It is
not clear to what extent temporal prophecy might be useful
in increasing the precision of such abstractions, but it may
be an interesting topic for future research.

8. Conclusion

We have seen that the addition of prophecy variables in
the form of temporal formulas can increase the precision of
liveness-to-safety tranformations for infinite-state systems.
The prophecy variables are derived from additional temporal
formulas that in our implementation were mined from the
invariants a user provides to prove the safety property.
This approach is effective for proving challenging examples.
By increasing the precision of the dynamic abstraction, it
avoided the need to decompose the proof into nested termi-
nation arguments, reducing the human effort of proof con-
struction. Though completeness is not possible, we saw that
the additional expressiveness of temporal prophecy provides
a cut elimination property. While we considered tempo-
ral prophecy using a particular liveness-to-safety construc-
tion (based on dynamic abstraction), it seems reasonable
to expect that the tableau-based approach would apply to
other constructions and abstractions, including constructions
based on rankings and well-founded relations. Because our
approach relies on an inductive invariant supplied by the
user, it requires the user to understand the liveness-to-safety
transformation and it requires both cleverness and a deep
understanding of the protocol. For this reason, a possible
avenue for future research would be to explore invariant
synthesis techniques, and in particular ones that account for
refinement due to temporal prophecy.
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[37] C. Urban and A. Miné, “An abstract domain to infer ordinal-valued
ranking functions,” in Programming Languages and Systems - 23rd
European Symposium on Programming, ESOP 2014, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, 2014,
pp. 412–431.

[38] ——, “A decision tree abstract domain for proving conditional termi-
nation,” in SAS, ser. Lecture Notes in Computer Science, vol. 8723.
Springer, 2014, pp. 302–318.

[39] ——, “Inference of ranking functions for proving temporal properties
by abstract interpretation,” Computer Languages, Systems & Struc-
tures, vol. 47, pp. 77–103, 2017.

http://dl.acm.org/citation.cfm?id=646737.701938
https://doi.org/10.1016/S0167-6423(99)00030-1
http://doi.acm.org/10.1145/3158114

	Introduction
	Illustrative Example
	Preliminaries
	Transition Systems in First-Order Logic
	First-Order Linear Temporal Logic (FO-LTL)
	Tableau for FO-LTL

	Liveness-to-Safety with Temporal Prophecy
	Safety Property: Absence of Abstract Lassos
	Augmenting the Transition System with Temporal Prophecy
	The Ticket Example

	Closure Under First-Order Reasoning
	Implementation & Evaluation
	Related Work
	Conclusion
	References

