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Abstract

Efficient techniques for the manipulation of Binary Decision Dia-
grams (BDDs) are key to the success of formal verification tools.
Recent advances in reachability analysis and model checking algo-
rithms have emphasized the need for efficient algorithms for the ap-
proximation and decomposition of BDDs. In this paper we present
a new algorithm for approximation and analyze its performance in
comparison with existing techniques. We also introduce a new de-
composition algorithm that produces balanced partitions. The ef-
fectiveness of our contributions is demonstrated by improved re-
sults in reachability analysis for some hard problem instances.

1 Introduction

Symbolic state enumeration techniques based on Binary Deci-
sion Diagrams (BDDs [2]) have revolutionized formal verification
[8, 4, 17, 1, 14]. They have two key features that make them suit-
able to the exploration of very large state graphs: They represent
sets compactly, and they avoid explicit enumeration in image com-
putation. Given the transition relation of a system,R(x; y), and a
set of states,F (x), the set of states reachable in one step from states
in F , T (y), is computed by

T (y) = 9x[R(x; y) � F (x)]:

This simple formula is at the heart of efficient algorithms for reach-
ability analysis, language containment, and model checking. How-
ever, numerous improvements must be applied to the basic idea in
order to make it work for realistic problems. The common aim of
these improvements is to control the size of the BDDs created and
manipulated during state exploration. This has been achieved by
keeping the transition relation in partitioned form [28, 3, 10, 22];
by controlling the BDD variable order [12, 24]; by abstracting the
system to be verified [16, 13, 15, 7]; or by abandoning pure breadth-
first search in favor of more flexible approaches [23, 5, 21, 19].

Abstractions and methods that mix breadth-first and depth-first
search rely, sometimes in crucial ways, on operations that ap-
proximate and decompose BDDs. In this paper we present new
algorithms for these problems, and compare new and existing
techniques. Our contributions help high-density traversal [23]
achieve significant acceleration over the conventional breadth-first
approach.

Minimization and decomposition of boolean functions have been
the subject of much research in the last half century. However, early
work is mostly inapplicable to decision diagrams; hence, the first
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Figure 1: Remapping inconstrainandrestrict. Solid lines arethen
arcs. Dashed lines are regularelsearcs, and dotted lines are com-
plement arcs.

relevant results are theconstrain[8] andrestrict [9] algorithms. We
discussrestrict briefly now for two reasons: First, to provide the
background required in Section 3, and second, to illustrate an ap-
proach to manipulation of BDDs that is common to the algorithms
introduced in this paper.

Throughout this paper we assume that a variable order is given—
possibly derived dynamically. We usejf j to denote the size of the
BDD of function f under the given order; andkfk to denote the
number of minterms of functionf . We only distinguish between a
function and its BDD when it is necessary to avoid ambiguity.

The inputs torestrict are a BDD to be minimized,f , and the
BDD of acare set, c. The output is a BDD,f + c, that agrees with
f whereverc = 1. The choice of(f + c)(x) whenc(x) = 0 is
heuristically made to reducej(f + c)(x)j. Consider Figure 1. One
child of c is 0; hence the corresponding subgraph off = xft+x0fe
can be changed. If it is replaced by the subgraph of the other child—
in the figure,fe is replaced byft—not only the nodes that are only
in the replaced child are eliminated, but the parent node becomes
redundant as well. The process then recurs onft to yieldr. (Which
in this case isf 0

e.) This remappingstep, whichrestrict recursively
applies while it traversesf and c, is its basic optimization tech-
nique; it is quite typical of BDD algorithms because it is a local
transformation, whose purpose is to increase the sharing of nodes.
We shall see that the remapping step plays a significant role in both
our approximation and decomposition algorithms.

This paper is organized as follows: Section 2 discusses the prob-
lem of approximating BDDs and presents a new algorithm called
remapUnderApprox. Section 3 is devoted to BDD decomposition.
Section 4 presents experimental results obtained by applying the
new approximation algorithm to reachability analysis, as well as a
detailed comparison of various approximation techniques. Conclu-
sions are in offered in Section 5.

2 Approximation

BDD approximation is the problem of deriving from a given BDD
another BDD smaller in size, and whose function is at a low Ham-
ming distance from the input BDD. (That is, differing from the
input BDD in a small number of input assignments.) Let�(f) be
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the BDD produced by the application of approximation algorithm�
to the BDD off . Usually, the function of the approximating BDD
is required to be either a subset or a superset of the input function,
that is,

�(f) � f or �(f) � f:

For anunderapproximationalgorithm� (such that�(f) � f ),
:�(:f) � f . Hence, we only discuss underapproximation.

Underapproximation algorithms must trade off the size of the re-
sult for the distance fromf . The two trivial solutions, 0 andf itself,
are seldom useful. A natural way to rank different approximations
is by their density, denoted by�(�(f)) and defined in [23] by:

�(g) =
kgk

jgj
:

High density corresponds to a concise representation, and is there-
fore desirable. (For overapproximation, we want to maximize the
density of the complement of the result.) However, in some circum-
stances, the number of nodes, or the number of minterms, and not
just their ratio, are important.

Two algorithms for underapproximation were proposed in [23];
both are two-pass procedures, where the input is analyzed in the
first pass and the result is produced in the second pass by replacing
some arcs to internal nodes with arcs to the constant 0.

Heavy-branch subsetting(HB) determines how many minterms
are in the function rooted at each internal node, and how many
nodes would be eliminated by replacing arcs pointing to it. The sec-
ond pass then proceeds from the root of the BDD and discards the
“light branch” of each node, that is, the child with fewer minterms,
until the size of the residual BDD crosses a given threshold. The
result is a BDD with a string of nodes at the top, each with one child
as the constant 0.

Short-path subsetting(SP) is based on the idea that short paths
in a BDD correspond to large implicants of the function and use
few nodes. Therefore in its first pass it determines the length of
the shortest paths through each node, and then builds the result by
discarding nodes with no short paths through them.

Both HB and SP run in time linear injf j: This implies that only
a limited study of the BDD is possible. Also, both are controlled by
an upper bound onj�(f)j, and though they both strive to increase
density, they may occasionally decrease�(�(f)) to reach the target
j�(f)j. Therefore, in analogy to the concept ofsafe minimization
of [11], we introduce the following definition:

Definition 1 An underapproximation algorithm� is safeif �(f) �
�(�(f)).

It follows from Definition 1 that a safe overapproximation algo-
rithm increases the density of the complement.

2.1 A Safe Underapproximation Algorithm

We now present a new algorithm for safe underapproximation
whose main idea first appeared in [26, 25]. The algorithm is called
remapUnderApprox(RUA) and differs from HB and SP in two main
respects: 1) It computes for each node a lower bound on the in-
crease in density that would follow from its replacement. 2) It can
replace a node not just with a constant 0, but also with other sub-
functions off .

remapUnderApproxconsists of three passes, as shown in Fig-
ure 2. The first pass,analyze, consists of a depth-first search of the
BDD to be approximated. For each node, the number of minterms
in the function rooted at the node, and the number of arcs point-
ing to it from other nodes inf (referred to asfunctionReflater) are
computed. This information is collected in the data structureinfo,
which is then updated in the second pass and used in the third pass
to build the result;info also holds global information on the BDD

remapUnderApprox(f , threshold, quality)f
info = analyze(f );
info = markNodes(f , threshold, quality, info);
return(buildResult(f , info));

g

Figure 2: Remapping underapproximation algorithm.

markNodes(f , threshold, quality, info)f
queue =emptyPriorityQueue();
enqueue(queue,f , level(f ));
while (queue not empty)f

if ( resultSize(info) � threshold) return(info);
node =dequeueFirst(queue);
replacement =findReplacement(node,info);
if (densityRatio(replacement, info)> quality)

info = updateInfo(info, node, replacement);
enqueueChildren(queue, node, replacement);

g
return(info);

g

Figure 3: Node marking procedure.

and its approximation, and other fields for each node that are used
by markNodesandbuildResult. In particular, for each node it holds
its replacement status, which initially isdo-not-replace.

2.1.1 Determining Node Replacement

The second step ofremapUnderApproxis detailed in Figure 3. The
BDD of f is traversed in top-down fashion using a priority queue,
so that all nodes labeled by variablex are examined before any
node labeled by variabley is examined, ifx precedesy in the order.
When a node is retrieved from the queue, it is tested for replace-
ment. We have implemented three types of replacement. The first
type,remap, replaces a node by one of its children as inconstrain
[8]: It can be applied if the function rooted at one child of the cur-
rent node is contained in the function rooted at the other child. (That
is the function rooted at the current node is unate in its top variable.)
The current node is replaced by the smaller child: Iff = xft+x0fe
andfe � ft, for instance, thenf is replaced byfe. The second type
of replacement,replace-by-grandchild, applies when the two chil-
dren of the current node are labeled by the same variable, and they
share either the “then” child or the “else” child. Under these condi-
tions, the shared grandchild can be used to replace the current node:
If f = x(yftt + y0fte) + x0(yfet + y0fee), andftt = fet, then
yftt � f andyftt can replacef . The last and simplest replacement
type isreplace-by-0: it can always be applied.

ProcedurefindReplacementtries the replacements in the above
order and selects the first that applies. The chosen replacement is
then definitely accepted or rejected based on the impact that it has
on the density of the result. The impact is computed by counting
exactly the number of minterms that will be lost to the replacement,
and by computing a lower bound to the number of nodes that will be
saved.findReplacementcomputes these two quantities as detailed
in the next section. It then returns the result in “replacement,” which
also holds the replacement type.

2.1.2 Estimating the Change in Density

The number of minterms lost if a node is removed from a BDD
is computed as the product of two quantities: The minterm count
of the function rooted at the node (considered as a function of all
the variables inf ) and the fraction of paths from the root off to
either constant that go through the current node. ProceduremarkN-



nodesSaved(g,info) f
savings = 0;
setLocalRef(info,g,functionRef(info,g));
queue =emptyPriorityQueue();
enqueue(queue,g, level(g));
while (queue not empty)f

v = dequeueFirst(queue);
if ( localRef(info,v) = functionRef(info,v)) f

savings++;
increaseLocalRefOfChildren(info,v);
enqueueChildren(queue,v);

g
g
return(savings);

g

Figure 4: Node savings computation. Not shown is the initialization
of localRef to 0 for all nodes.

odescomputes this fraction during the top down traversal, so that
for each node it may take into account the replacements for nodes
higher in the BDD. The minterm count, on the other hand, is not
affected by changes to the upper part of the BDD and therefore
is computed during the first pass. The complexity of counting the
minterms lost to replacements is linear injf j if this way of breaking
down the computation is used.

The bound on the node savings, on the other hand, is simply
computed by finding how many nodes are dominated1 by the nodes
that are eliminated. The eliminated nodes are the current node, for
replace-by-0; the containing child of the current node forremap;
either child of the current node forreplace-by-grandchild. In ad-
dition, the current node is always eliminated. In all three cases the
procedure of Figure 4 is used to find the dominated nodes: A top-
down search of the BDD is started from each nodeg that is being
eliminated. When a nodev is retrieved from the queue all its pre-
decessors reachable fromg have been processed. Hence,localRef
gives the number of predecessors ofv reachable fromg. On the
other hand,functionRefgives the number of predecessors ofv node
reachable fromf . If these two numbers are the same, theng dom-
inatesv. The total number of predecessors returned byfunctionRef
is initialized byanalyzeand updated byupdateInfo. The other im-
portant tasks ofupdateInfoare to record the type of replacement
chosen, and to update the number of minterms and the estimate of
the size of the result.

The nodes that are dominated by nodes that are going to be elimi-
nated clearly contribute to the node savings of a replacement. How-
ever, further nodes may be saved due to sharing caused by the re-
placement in the part of the BDD above the current node. This is
why we only have a lower bound on the reduction in size of the
BDD.

FunctiondensityRatiocomputes the ratio of the densities with
and without the selected replacement and compares it to “quality.”
If parameter “quality” is greater than or equal to 1, then only re-
placements that increase the density are accepted. Values smaller
or greater than 1 can be used when the result obtained for quality =
1 have too many or too few nodes, respectively.

Once all nodes have been marked with their replacement status,
buildResulttraversesf in depth-first manner and for each node re-
turns the result of applying the selected replacement.

2.1.3 Discussion

The worst-case run time ofremapUnderApproxis quadratic injf j,
due to the total cost of checking for each node the containment of

1A nodev dominates a nodew if all paths from the root of the BDD to
w go throughv.

each child in the other, and to the call tonodesSaved. In practice,
however, the algorithm takes time linear injf j in most cases.

So far, we have ignored complement arcs for the sake of sim-
plicity. The algorithm as outlined applies also in their presence,
with a few modifications. First, the only replacement that can be
applied to nodes reachable through paths of different complemen-
tation parity isreplace-by-0. In addition, the estimate of the node
savings is no longer guaranteed to be a lower bound ifreplace-by-0
is applied to those nodes. Therefore, replacement is only applied to
nodes reachable through paths of one complementation parity only.
Minterm counts and fractions of paths are counted separately for the
positive and negative phase, and the minterms lost to replacements
are computed as a weighted sum.

The originalbddUnderApproxalgorithm of [26, 25] differs from
remapUnderApproxin the following aspects:

� The cost function is a convex combination of the number of
minterms and the number of nodes, instead of the ratio of the
two numbers.

� Only replace-by-0is used. Because of this restriction, it is
easy to replace nodes that are reachable through paths of dif-
ferent complementation parity (if complement arcs are used).
The resulting algorithm is not safe, because replacement of
one such node may cause splitting of a node higher in the
BDD, but in most cases it gives denser results than the safe
version.

2.2 Compound Algorithms

Given an approximation algorithm�(f), suppose a minimization
algorithm�(l; u) is also given such thatl � �(l; u) � u. We say
that�(l; u) is safe[11] if j�(l; u)j � jlj andj�(l; u)j � juj. Then

�(�(f); f)

is an approximation algorithm, which is safe if both� and� are
safe. Also, if�1 and�2 are approximation algorithms, then

�1(�2(f))

is an approximation algorithm, which is safe if both�1 and�2 are
safe. These simple rules can be used to trade off CPU time for the
increased density of the results. We call the resulting algorithms
compoundapproximation algorithms. As an example one can re-
peatedly apply RUA starting with a quality factor greater than 1
and decreasing it at each iteration until it equals 1. This has the
effect of mitigating the greediness of RUA. Other compound algo-
rithms are discussed in Section 4. Methods that are not compound
aresimple.

3 Decomposition

Decomposition is another important approach to reducing the size
of large BDDs. Decomposition of BDDs is closely related to find-
ing efficient partitioned representations of a given boolean function.
Partitioned representations [20, 3] may be derived in the process of
building a BDD or by decomposing a given BDD. The former is
easier to obtain when some structural information, such as the net-
work, is provided. Auxiliary variables are introduced while con-
structing the BDD. They alleviate ordering constraints and reduce
the size of the partitions. Alternately, a static analysis of the net-
work may yield good decomposition points.

We concentrate on the problem of functional decomposition—
decomposing a large BDD into a set of smaller ones, which can
be combined to form the original BDD. Given a BDD, a variable
order, and no prior knowledge of the nature of the function,



decomposition techniques require an analysis of the given BDD.
In the simplest case, these may be conjunctive or disjunctive de-
compositions. The goal is to reduce the shared size (to occupy less
storage space) as well as the individual sizes (for easier manipu-
lation) of the decomposed set as compared to the original BDD size.

Prior Work . To form conjunctive factors for a functionf such that

f = x � fx + x
0

� fx0

we can create two factorsg andh where

f = g � h ; g = x+ fx0 ; h = x
0 + fx (1)

Each of the 2 factors has a different cofactor set to1. Disjunctive
partitioning, in this approach, is completely symmetric to the con-
junctive method and is obtained by setting the different cofactors to
0.

Cabodiet al. [6] and Narayanet al. [19] propose decomposi-
tions based on Equation 1. They pick a suitable set of variables
and both produce disjunctive factors by computing cofactors of the
function f with respect to all boolean assignments of the chosen
variables. They use different cost functions for the choice of vari-
ables. The cost functions heuristically reduce the size of the de-
composed BDDs. Cabodiet al. use a threshold size to derive the
decomposed BDDs and Narayanet al. use a pre-specified number
of partitions. These methods have been tested in reachability anal-
ysis where a balanced partition is important for efficient traversal.
Cabodiet al. also observed that obtaining a disjunctive partition
using dense subsets [23] does not yield balanced partitions.

McMillan [18] presents a different approach to decomposition.
His method computes a canonical conjunctive decomposition
based on exploiting conditional independence between variables.
The algorithm performs successive existential abstraction and
cofactoring to reduce the size of the decomposed representation.
The number of factors produced are equal to the number of
variables. The size of the decomposed representation is linear in
the number of partitions and the size of the original BDD.

Our Approach . Our decomposition method is closely related to the
first approach. In that method, variablex forms a cut in the BDD
of f . Creating the factors amounts to setting the THEN children of
nodes labeledx to 1 in g and the ELSE children to1 in h. A more
general strategy would be to set the opposite children of each node
labeledx to1 (instead of settingall positive orall negative cofactors
to 1). A further generalization would be to relax the constraint of
the choice of nodes—from those labeledx to an arbitrary set of
nodes inf . We refer to these nodes asdecomposition points.

The algorithm is illustrated in Figure 5. Given a set ofdecom-
position points, our algorithm constructs the factors bottom up. At
the decomposition points, factors are created using Equation 1. At
every node above the decomposition point, factors are constructed
by combining those of the children as shown below.

g = x � gT + x
0

� gE ; h = x � hT + x
0

� hE or

g = x � gT + x
0

� hE ; h = x � hT + x
0

� gE

The algorithm maintains a cache for previously computed factors
for each node. It also attempts to encourage node sharing by storing
nodes created for each factor.
Decomposition Points. The choice ofdecomposition pointsis cru-
cial to this method. We have experimented with two greedy ap-
proaches to pick thesedecomposition points.

Band: The first method is to pick nodes that are low enough in
the BDD to achieve substantial reduction in the individual factor
sizes. However, if the nodes are picked too low in the BDD, most
of the recombination may be destroyed in building the factors. The

decomp(f ) f
if (f is 1 or 0) return (f , 1);
if cacheLookup(f , g, h) return (g, h) ;
v = topVar(f );
if (f is decomposition point) return (v + fe , v0 + ft);
(gt,ht) = decomp(ft);
(ge,he) = decomp(fe);
(g, h) = combine(gt,ht, ge,he);
return (g, h);

g

Figure 5: Decomposition algorithm.

required “middle band” is determined by using the distance of the
node from the constant as a measure. This measure requires one
pass of the BDD.

Disjoint: Nodes with sufficiently disjoint children yield maxi-
mum reduction in individual sizes, yet leave the shared size small.
Our second approach attempts to identify such nodes. For every
node, the number of nodes shared between its children is measured.
A node is chosen as adecomposition pointwhen its children have
little sharing and are balanced. Determining whether each node
is a decomposition pointrequires one pass of the BDD per node.
Hence the cost of this measure is quadratic in the number nodes of
the BDD. However, in practice, only a fraction of the nodes are
sampled for this measure.

We implemented a slightly different version of the algorithms of
[6, 19] (referred to asCofactor). Experiments and results of the
comparison with our approach are presented in the next section.

4 Experimental Results

The algorithms described in Sections 2 and 3 have been imple-
mented in the CUDD package [27] and tested in two sets of ex-
periments, one using an extension of VIS-1.2 [1], and the other
using CUDD’s stand-alone test program. The first set of experi-
ments regards the application of BDD approximation techniques to
reachability analysis. The RUA algorithm described in Section 2
is applied to “high density” reachability analysis [23] in the same
manner as the SP procedure. We experimented with a few circuits
and present the results in Table 1.

Table 1 presents best-time results for high-density reachability
analysis of four circuits. High density reachability analysis modi-
fies breadth-first search to compute a subset of reachable states at
each iteration of the traversal. It can be viewed as a mixed depth-
first breadth-first exploration of the state space. At each iteration,
image computation is provided with a dense subset that is extracted
from the set of new states. This extraction is implemented with
one of the approximation techniques. Additionally, the traversal
computes a subset of the image of a given set by computing sub-
sets of intermediate products of image computation. Subsetting
is used when the size of the intermediate product exceeds some
large threshold. Dynamic reordering is always turned on during
these experiments. For all the experiments reported (except BFS on
am2910), both BFS traversal and high density traversal completed
with the exact set of reachable states.

Columns 1–3 of Table 1 provides the circuit name, the number of
flip-flops and the reachable states of this circuit. The exact traversal
times are reported in Column4. s1269 , although small in terms
of the number of latches (37), took more than 256MB for exact
traversal and hence, was run on a SUN Ultra-1 with 1GB of main
memory. The main column labeled RUA indicates results where
remapUnderApproxis used for extracting the subset of the new
states as well as the subset of the intermediate products of image
computation. Similarly, the column labeled SP refers toshort-path



subsetting. The sub-columns report run times for each method, the
threshold used and (for RUA) the quality factor. The column la-
beled PImg reports two numbers: The first is a node limit that trig-
gers approximation of partial products in image computation; the
second is the threshold passed to the approximation procedure. The
“NA”s in the table indicate that partial image computation was not
required as the intermediate sizes always stayed small.

These experiments are the best runs for some parameter settings
(threshold, quality, partial image factors). The relative merit of tun-
ing the quality factor or adjusting the threshold cannot be studied in
this table. The parameters were determined by trial and error. The
speedup afforded by HD with RUA over breadth-first search is very
large in two cases out of four. In our experiments, we noticed that
when RUA had the fastest run times, the runs always corresponded
to small BDD sizes of reachable states (under50000 nodes). The
intermediate sizes were significantly smaller compared to the orig-
inal runs: RUA is very effective in reducing the sizes of large in-
termediate products of image computation. The fast run times and
low memory occupation also support the conjecture that RUA ex-
tracts dense subsets, which is required for high-density reachability
analysis to perform well.

In comparison to SP, there is no clear indication as to which
method is better. With a0 threshold, RUA is free to reduce the size
of the given set arbitrarily. This works well fors1269 , s3330 ,
and am2910. In the case ofs5378opt , SP is more effective
for the given threshold. The differences among the various cir-
cuits seem due to the topology of their state graphs in ways that
we only partly understand so far. However, we have observed that
the method that performs better always has a higher average den-
sity of subset of new states. We conducted some experiments using
SP for creating subsets of new states but RUA for partial image
computation, and the run-times were faster than using SP for both.
Using approximation procedures in reachability analysis has com-
pounded effects on the statistics of the runs (reordering, growth
of the reached set in number of states and nodes). If a procedure
extracts the “wrong” subset of states for image computation, then
traversal may progress very slowly or may not complete. Indeed,
this is true for some parameter settings. Notice that “wrong” here
does not necessarily mean “less dense.” However, the fast run times
in this table indicate that RUA is effective in spite of the cascaded
effects and is practically applicable in efficient symbolic traversal
techniques.

It is difficult to conduct a head-to-head comparison of different
approximation techniques in the context of reachability analysis,
due to the repercussions of any change in one step of the proce-
dure on the successive steps. Therefore we present a second set of
experiments, where we apply the approximation techniques to the
outputs and next state functions of a collection of circuits. From a
total of 7157 functions, we extracted the 336 that had 5000 nodes or
more. In Tables 2 and 3 we report the geometric means of the num-
bers of nodes, the number of minterms, and the densities of several
methods, as well as the number of cases in which each technique
produced the densest result, either alone (wins) or together with
other techniques (ties). Table 2 describes the simple methods and
Table 3 describes compound methods. The results of UA are for the
non-safe implementation, which on average outperformed the safe
one, in spite of decreasing density in 3 of the 336 cases. Simple and
compound methods are kept separate so that the relative strengths
of SP and RUA can be better appreciated, because C1 never loses
to RUA, and C2 never loses to SP.

In these experiments, the thresholds for UA and RUA were set
to 0 and the quality factor was kept at 1. In general these were
the most favorable values for these experiments. The sizes of the
BDDs produced by RUA were used as thresholds for HB and SP.
Though there is no guarantee that these thresholds produce the best
results, experimentation showed that they did not put SP and HB at

Method nodes minterms density wins ties
F 14449.4 1.06e+45 7.30e+40 0 2

HB 24.5 3.30e+42 1.35e+41 3 65
SP 41.9 2.48e+44 5.92e+42 6 7

UA 28.3 3.72e+44 1.32e+43 24 78
RUA 30.4 6.04e+44 1.99e+43 219 80

Table 2: Comparison of approximation methods I: Simple meth-
ods. F denotes the original function, HB heavy-branch subsetting,
SP short-path subsetting, UA bddUnderApprox, and RUA rema-
pUnderApprox.

Method nodes minterms density wins ties
C1 30.3 6.14e+44 2.03e+43 125 87
C2 14.7 2.59e+44 1.76e+43 124 85

Table 3: Comparison of approximation methods II: Compound
methods. C1 denotes RUA followed by minimization, and C2 de-
notes SP followed by RUA followed by minimization.

a disadvantage with respect to UA and RUA.

Regarding the compound methods, one should notice that C1
retained more minterms of F than RUA on average, and C2 retained
more minterms than SP (in spite of halving the number of nodes).
This increase is the effect of the minimization step.

We also ran experiments comparing the decomposition meth-
ods described in Section 3 for two-way decomposition. We im-
plemented the approach of [6, 19] choosing as cofactoring variable
the one that minimizes the size of the larger of the two cofactors.
The cost of estimation of the cofactor sizes is linear in the product
of the number of variables and the size of the function.

Table 4 shows results for the 3 methods—the above implementa-
tion, and our algorithm with the two different choices of decompo-
sition points. The experimental setup is similar to Tables 2 and 3.
There are 2 sets of results in this table—one for BDDs with at least
5000 nodes and the other for BDDs with at least 20000 nodes. Each
method produced 2 factors,G andH, whose mean sizes are re-
ported in the table. The column labeled “Shared” reports the mean
shared size ofG andH. The wins and ties of each method, reported
in the last 2 columns, are based on the size of the larger ofG and
H.

Cofactor yields the best results for a large number of BDDs.
Bandperforms a little better thanDisjoint (additionally is cheaper
to compute). One explanation for the results is thatDisjoint and
Band, although less restricted thanCofactorin the choice ofdecom-
position points, perform a local search and make greedy choices.
Cofactor, on the other hand, benefits from a global search for the
smallest factors. For some of the larger BDDs,Disjoint does per-
form better thanCofactor, as shown in the lower half of the table.
However, since the sample space is small, this result is not conclu-
sive.

Min. Nodes = 5000 ,jf j = 11134.5, 279 BDDs
Method Shared G H wins ties

Cofactor 11352.1 7029.7 4906.3 192 4
Disjoint 11990.9 8637.5 8182.8 57 4

Band 13590.4 8244.0 7182.7 26 0
Min. Nodes = 20000,jf j = 42872.9, 11 BDDs

Cofactor 47952.0 26394.3 25813.0 2 1
Disjoint 42877.0 22575.4 22866.5 8 1

Band 52614.4 30728.8 26055.5 0 0

Table 4: Comparison of decomposition methods.



Ckt FF States BFS time RUA SP
Th Qual PImg Time Th PImg Time

s3330 132 7:2778e+ 17 3204 0 1:0 50000=50000 562 7000 100000=100000 1351
s1269 37 1:13134e+ 09 52691 0 0:5 100000=50000 290 3000 100000=50000 525
s5378opt 121 2:58061e+ 17 1454 5000 1:4 NA 1140 4000 NA 575
am2910 99 1:16057e+ 26 > 2 weeks 0 1.0 NA 217 99 NA 224

Table 1: Reachability analysis results using BDD approximations.

5 Conclusions

We have presented new algorithms for BDD approximation and de-
composition. Our new approximation algorithm produces signifi-
cantly denser subsets than existing techniques thanks to a combi-
nation of versatile replacement techniques and efficient and accu-
rate estimation of the impact of local transformations. We have
also shown how approximation algorithms can be combined among
themselves and with minimization procedures to yield even better
results. Our new conjunctive decomposition algorithm efficiently
balances the size of the conjuncts. In spite of being more general,
however, it does not improve on the algorithm of [6, 20]: Further
work is required on the selection of the decomposition points. Both
the approximation and decomposition techniques have been incor-
porated in an experimental reachability analysis engine based on
high-density traversal. The results are very promising, with sub-
stantial increases in speed over conventional breadth-first traversal.
More work is required to increase the robustness and performance
of the new traversal techniques, but the effectiveness of the algo-
rithms discussed in this paper greatly increases our confidence in
their eventual success.
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