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Abstract

In many computer-aided design tools, binary decision diagrams
(BDDs) are used to represent Boolean functions. To increase the
efficiency and capability of these tools, many algorithms have been
developed to reduce the size of BDDs. This paper presents heuris-
tic algorithms that minimize the size of BDDs representing incom-
pletely specified functions by intelligently assigning don’t cares to
binary values. The traditional algorithm, restrict [8], is often effec-
tive in BDD minimization, but can increase the BDD size. We pro-
pose new algorithms based on restrict which are guaranteed never
to increase the size of the BDD, thereby significantly reducing peak
memory requirements. Experimental results show that our tech-
niques typically yield significantly smaller BDDs than restrict.

1   Introduction

The efficient representation and manipulation of Boolean functions
is critical to many computer-aided design applications including
logic synthesis, formal verification, and testing. Binary decision
diagrams (BDDs) have proven to be an efficient means of repre-
senting and manipulating many commonly used Boolean func-
tions. For BDD-based tools, the size of the BDDs can determine
their run-time efficiency, the problem size that they can handle,
and/or the quality of the circuits they synthesize [5]. Many tech-
niques have been developed to find BDD variable orderings that
lead to compact BDDs [1, 2]. For a given variable ordering, the
BDD representation of a completely specified function is unique.
For incompletely specified functions, however, many BDDs can be
used to represent the function, each associated with a different
assignment of don’t cares (DCs) to binary values. This paper
assumes the variable ordering is fixed and addresses the problem of
finding an assignment of DCs that yields a small BDD representa-
tion.

Finding the smallest BDD usingdon’t cares is known to be NP-
complete [3] and exact techniques [4] are not applicable to most
practical applications. Therefore, heuristic algorithms have been
developed to address thisBDD minimization problem. These heu-
ristics try to maximize the instances ofnode sharing andsibling-
substitution [12] during the minimization process. BDD nodes
becomeshared if the re-assignment of DCs makes their associated
sub-functions identical. Sibling-substitution is a special case of
node sharing where a child of a BDD nodeu is replaced by the
other child ofu, thereby removingu and the child.

Changet al. [11] proposed a method to share multiple nodes at
each level in the BDD in top-down order. The reduction potential
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of their method is large, but its high computational complexity pro-
hibits its application to large BDDs.

The restrict operator and theconstrain operator (also known as
generalized-cofactor) [8, 9, 10] are well known BDD minimization
algorithms. Both algorithms implement sibling-substitution recur-
sively. Shipleet al. [12] proposed a framework to relate these heu-
ristics and explored several variants. Their experimental results
suggest that therestrict operator and its variants are efficient in
terms of both run-time and resulting BDD size. A common prob-
lem of these techniques, however, is that the size of the BDD may
increase as a result of the ‘minimization’, as illustrated in Figure 1.
An obvious way to avoid using a larger BDD is to compare the
original BDD with the ‘minimized’ BDD and use the smaller one.
We refer to this approach asthresholding. The potential for size
increase, however, suggests that these methods may not produce
BDDs as small as those produced by algorithms that guarantee that
no sub-BDD becomes larger.

This paper describessafe BDD minimization heuristics,i.e.,
they guarantee the resulting BDD is not larger than the original
BDD. These algorithms are based on the observation thatrestrict,
while always reducing the size of the target sub-BDD, can increase
the size of a BDD which contains the target sub-BDD. Consider
the left childd of nodec in the BDD depicted in Figure 1 (a). Node
d can be reached from the root by two differentpathsand has two
different associated care sub-sets, represented by noded ande in
the Care-BDD depicted in Figure 1 (b). Inrestrict, sibling-substitu-
tion is applied to the right child ofd (replacing it withe) because
the right child of the Care-BDD noded corresponds to a DC,
resulting in a smaller sub-BDD rooted atc. However, since a dif-
ferent sub-BDD rooted atc is needed for the other path, nodec
becomes unshared. We call this effectnode splitting. This splitting
of c leads to the overall size increase illustrated in Figure 1 (c).

We developsafe minimization heuristics by performing sibling-
substitution only on the nodes which we can guarantee will not
cause an overall increase in BDD size. These techniques can lead
to better minimization results by preventing sibling-substitutions
that cause growth while allowing sibling-substitutions elsewhere.
Compared tothresholded restrict our algorithms produced up to
27% smaller BDDs. The results compared torestrict are much
more dramatic, becauserestrict increased the size of many BDDs
we tested.

 After defining the problem and presenting relevant notations in
Section 2, we present our two techniques calledbasic compaction
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 Figure 1: Example of restrict increasing BDD size.
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andleaf-identifying compaction in Section 3. Section 4 reports our
experimental results and we present some conclusions in Section
5.

2   Preliminaries

We denote the set of nodes of a BDD [7] with N and the set of
edges with E. There are two types of nodes in N, leaf nodes and
non-leaf nodes. The leaf nodes are either 0 or 1, representing the
Boolean functions 0 and 1, respectively. Each non-leaf node u has
two outgoing edges; athen_edgeand anelse_edge.Each edge is
connected to achild node ofu and u is theparent of the child
nodes. The two child nodes aresiblings of each other. Each non-
leaf node F is associated with a Boolean variablex. The child of F
reached via the then_edge is denoted by Fx; the other child is
denoted by Fx. When not ambiguous, we will use F to refer both to
a function and a BDD that represents the function. The size of a
BDD F, denotedF, is the number of nodes in F.

The domain of any single-output Boolean functionff can be
partitioned into three subsets,ffon (the on-set),ffoff (the off-set),
and ffdc (the don’t care set). A completely specified function has
ffdc empty, while an incompletely specified function has a non-
empty don’t care set. Any two of these sets uniquely describes an
incompletely specified function.

An incompletely specified functionff can be represented by a
pair of completely specified functions [f, c] for which fon ⊇ ffon, foff
⊇ ffoff, andc = ffon∪ ffoff. For a given incompletely specified func-
tion ff, there are many such functionsf, each referred to as a cover
of ff, representing different partitions offfdc into fon andfoff.

Definition 1 Given an incompletely specified functionff, f ′ is a
cover of ff if f ′on ⊇ ffon, andf ′off ⊇ ffoff.

In practice, [f,c] is typically given in the form of a BDD pair [F,
C]. Among all covers offf, there must be at least one coverf ′
whose BDD F′ is smallest in size. Unfortunately, finding a small-
est F′ for a given [F,C] pair representingff is NP-complete [3], so
we consider heuristic approaches. Given [F, C], finding an F′ that
is hopefully close to minimal in size is called BDD minimization
using don’t cares. We call F the original BDD and F′ the mini-
mized BDD, even though traditional algorithms can yield an F′
larger than F. (The termreduced BDD is not used because it may
be misinterpreted as a result of the reduction procedure used in
generating BDDs.)

3   Minimization Algorithms

This section develops heuristic BDD minimization algorithms that
guarantee the minimized BDD is no larger than the original. Our
algorithms consist of two phases. In the first phase, the original
BDD is preprocessed to identify nodes for which applying sibling-
substitution doesnot increase overall BDD size. In the second
phase, sibling-substitution is selectively applied to the nodes iden-
tified in the first phase.

We present two algorithms. The first one, calledbasic compac-
tion, is a simple technique that performs a subset of the sibling-
substitutions that do not causenode-splitting. The second one,
called leaf-identifying compaction, which is more sophisticated,
effectively allows node-splitting in the special case that the new
node is a leaf.

3.1  Basic Compaction

To explain our basic approach we define a one-to-many map
between edges in F and nodes in C. Specifically, we say the
then_edge (else_edge) of a nodeu in Fmaps to all nodesv in C for
which there exists a partial input combinationp and an extended
versionp′ with x = 1 (x = 0) such that F evaluates tou for p and to
ux (ux) for p′ and C evaluates tov for p′, wherex is the variable
associated with nodeu.

Consider first the case in which each edge in F maps to exactly

one node in C. This occurs when no non-leaf nodes in F are shared
(have more than one parent) as in the BDDs depicted in Figure 2.
For this simple case, we can easily predict the structure of the min-
imized BDD as a result of sibling-substitution as follows. If an
edge between nodesv and u in F matches to the 0 leaf in C, this
means that the extended partial input combination represents a
don’t care set in the original function. Consequently, we can
removeu and all nodes belowu and replaceu’s parent with its sib-
ling. If u matches to a 1 leaf (care leaf) in C, thenu and its descen-
dants must be preserved in the minimized result. Lastly, ifu
matches to a non-leaf node,u will be preserved in the minimized
result even though its descendants may or may not be preserved
(depending on whether or not they match to a don’t care). In other
words, we can predict which nodes can be removed by analyzing
the mapping between edges in F and nodes in C. In our basic algo-
rithm, we mark an edge in F if the child node connected to it is to
be preserved, as illustrated in Figure 2.

Now, consider a general BDD in which nodes may be shared.
Then, an edge between nodesv and u in F can map to multiple
nodes in C. If any of these nodes is not a DC, we can conserva-
tively assume that substitutingu with u’s sibling may cause node-
splitting (i.e., nodeu or a modified version of it is needed). Conse-
quently, we mark all incomingthen_edges (else_edges) for a node
if there is any corresponding node in C that is not a DC. For exam-
ple, in Figure 3, theelse_edge of c in F matches with both the 0
and 1 leaves in C and therefore it is marked. In contrast,restrict
performs sibling substitution if any mapped node in C is a DC.

After the first phase, calledmark-edges, is completed, the sec-
ond phase, we callbuild-result, rebuilds the BDD F solely based
on the markings on edges in F. If an edge from a nodev to any of
its child nodesu is not marked, thenv can be safely replaced byu’s
sibling via sibling-substitution. Otherwise,v is preserved and its
children are recursively rebuilt. Figure 4 illustrates thisselective
sibling-substitution-based rebuilding technique on an edge-marked
BDD.

Figure 5 illustrates the results of both phases of the algorithm
on the example given in Figure 1. Notice that all edges are marked
and the result is the same BDD as the original one. That is, this
algorithm, referred to asbasic compaction, prevents the BDD from
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growing.
Figure 6 presents the pseudo-code ofbasic compaction. The

time complexity ofmark-edges is O(F·C) because each pair of
nodes from F and C is called only once by using an operation
cache. Due to the application of another operation cache,build-
result processes each node only once, yielding a time complexity
of O(F). Clear-edges routine clears the edge-marking fields after
building the result and has time complexity of O(F). Conse-
quently, the overall time complexity ofbasic compaction is
O(F·C), the same complexity asrestrict.

Basic compaction is a correct BDD minimization, as defined
below (proof omitted).
Definition 2 A BDD minimization using don’t cares is correct if
the minimized BDD is a cover of the original BDD.
Theorem 1Basic compaction is correct.

Now, we show thatbasic compaction is safe. Recall that a BDD
minimization using don’t cares is safe if the minimized BDD is
guaranteed to be no larger than the original BDD, i.e.F ≥ F′.
Theorem 2Basic compaction is safe.
Proof: The result ofbasic compaction is produced bybuild-result.
Recall thatbuild-result takes F as its only argument and that the
nodes of F have two Boolean labels: a then_edge and an else_edge.
For the purposes of this proof, it does not matter how these labels
are set bymark-edges. Inspection ofbuild-result shows it does not
affect the status of any then_edge or else_edge. Thus, for a given
sub-BDD G of F, a call tobuild-result with argument G always
produces the same result. Let F′ be the result ofbuild-result
applied to F. It is easy to show by induction on the depth of F that
every sub-BDD of F′ (including F′ itself) is the result of calling
build-result on some sub-BDD of F. Thus, sincebuild-result
always produces the same result when applied to a given sub-BDD
of F, the number of sub-BDDs of F′ is no larger than the number of
sub-BDDs of F. Thus, the size of the F′ is no larger than the size of
the F. So, we can conclude thatbasic compaction is safe.❑

Intuitively, basic compaction is safe because it ensures that no
nodes will be split. This property can be deduced from the struc-
ture of build-result. It creates one node for each node it visits
(which uniquely depends on the edge-marking) and visits each
node at most once (because of the operation cache). Specifically,
nodes that are not reachable from the root by a path of marked
edges are not visited bybuild-resultand thus not included in the
minimized BDD.

3.2  Leaf-identifying Compaction

This subsection presents an enhanced safe minimization technique
in which a special type of node splitting is allowed. Consider the
set of sibling-substitutions applied to a childu with respect to its
parentv. When the results of all the substitutions foru are unique,
then the sibling-substitutions can increase the BDD size only by
the size of the unique result. Leaf nodes are special in that they are
essential for all non-trivial BDDs. So, the idea of new algorithm is
to accept the result of sibling-substitution if the result is a unique
leaf (i.e. replace the edge from v to u with an edge from v to the
leaf). Note that,u may be preserved or replaced in the minimized

BDD if it has multiple parents, depending on sibling-substitutions
with respect to its other parents.

This approach will usually lead to better results for two reasons.
First, a sub-BDD can be replaced by a leaf which might be pre-
served inbasic compaction. We call this type of gain asGain 1.
Second, the number of edges marked can be less than inbasic
compaction because the edge-marking routine needs not recur
through edges to be redirected to leaves.  This type of gain is called
Gain 2. Typically, less edge-markings leads to smaller BDDs
becausebuild-result removes nodes connected by unmarked edges.
Note, however, that this approach is not guaranteed to produce bet-
ter results thanbasic compaction because the two algorithms can
result in different unshared nodes becoming shared unpredictably.

This new approach can be implemented using a two-phase
edge-marking routine and a  modifiedbuild-result. The first phase
of edge-marking computes the results of all possible sibling-sub-
stitutions from which it identifies the edges that can be redirected
to leaves. The second phase is similar to basic edge-marking
except that it does not recur through edges that can be redirected to
leaves. After edge marking, the modifiedbuild-result routine redi-
rects all identified edges to their annotated leaf and applies sibling
substitution to all remaining unmarked edges.

Figure 7 shows an example (that is slightly different from the
one in Figure 5) where both gains contribute in minimizing the
BDD. First, thethen_edge from nodea and thethen_edge from the
nodeb on the right can be redirected to the 0 leaf (Gain 1). Conse-
quently thethen_edge of noded is unmarked (Gain 2). The modi-
fiedbuild-result routine leads to a minimized BDD with two nodes
less than the original BDD. In contrast,basic compaction leads to
no minimization because basic edge-marking must mark all edges.

The time complexity of this approach is almost twice as much
asbasic compaction because of the two-phase edge-marking rou-
tine since each edge-marking phase requires O(F·C). If we do
not pursue the gain from fewer marked edges (Gain 2), it is possi-
ble to merge the two phases of edge-marking into one. Our experi-
ments suggest that degradation of quality is negligible. We believe
this is because it is unlikely that all nodes on the paths leading to
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 Figure 5: An example of basic compaction

void mark-edges (bdd f, bdd c) {

if (f == leaf) return;

if  (cx != bdd_zero)
if  (f != fx) f.then_mark = 1;

bddbasic-compaction(bdd f, bdd c) {

mark-edges(f, c);
result = build-result(f);

if  (c == bdd_ zero) return (bdd_zero);

return(result);
}

x = top variable(f, c);

mark-edges(fx, cx);
if  (cx != bdd_zero)

if  (f != fx) f.else_mark  = 1;
mark-edges(fx, cx);}

if  (c == bdd_ zero) return;

clear-edges(f);

bddbuild-result (bdd f) {
if  (f  == leaf) return(f);
x = top variable(f);
if  (f.then_mark == 1 and f.else_mark == 0)

else if(f.then_mark  == 0 and f.else_mark == 1)
return (build-result(fx));

else
return (build-result(fx));

return (bdd_find(x, build-result(fx), build-result(fx)));}

 Figure 6: Basic compaction pseudocode



an excessively marked edge can be redirected to a unique leaf (so
that no marking is required for the edge).  Thus, this comprise rep-
resents a good performance/run-time trade-off.

We refer to this enhanced algorithm with the above compromise
as leaf-identifying compaction and it is given in Figure 9. Finding
and annotating nodes is performed in a preprocessing phase called
LI-mark-edges. Like restrict, this phase recursively performs sib-
ling-substitution. However, instead of returning the actual BDD
result, it returns a classification of the result. This classification
identifies whether the edge can be redirected to a 1 (encoded b01),
0 (encoded b10), DC (encoded b00), or non-leaf (encoded b11).
The encoding facilitates a bitwise-OR scheme that implements the
relative priority of non-leaves over leaves and leaves over DCs.
Figure 8 illustrates an example ofleaf-identifying compaction
where one edge, thethen_edgeof d, is additionally marked com-
pared to the example in Figure 7 (d).

The overall time complexity ofleaf-identifying compaction is
the same as the complexity ofbasic compaction which is
O(F·C).

4   Experimental Results

We conducted experiments to compare our two heuristics to
restrict, thresholdedrestrict, osm_bt [12] and thresholded osm_bt.
Osm_bt was chosen among a variety of heuristics developed by
Shipleet al. because it showed the best overall results in the exam-
ples they tested. The heuristics were incorporated into a formal
verification tool VIS [13] and were tested on BDDs found during
symbolic reachability analysis [14]. All experiments were run on
an Ultra SPARC 1/192M.

In our first experiment, monolithic transition relation BDDs
(TR BDDs) were minimized using two types of DCs. The first DC
set is the state transitions whose next states are already known to
be reachable (i.e., reached states.) In particular, state transitions
with such a next state can be removed/added to the TR BDD with
no effect on the final reachable state set [13]. The second DC set is
derived from thefrontier set, i.e., the set of states newly found to
be reachable by the previous iteration of reachability analysis. In
particular, state transitions in the TR BDD whose present state is
not in thefrontier-set are don’t cares [13]. After minimization, the
next states is computed by first conjuncting the TR and  frontier-set
and then existentially quantifying out the present state variables.
Note that the frontier-set based don’t cares must be recalculated in

each iteration based on the new frontier set found.
The minimization results on the TR BDDs from the VIS-1.1

example circuits are given in Table 1. We experimented with two
DC sets separately. Each DC set varies from iteration to iteration.
For each iteration we calculate theDC fraction, which is the per-
centage of input combinations for which the function value is a
DC. We report its range over all iterations for each example. The
average BDD minimization results over all iterations forrestrict,
thresholded restrict, osm_bt, thresholded osm_bt, basic compac-
tion, andleaf-identifying compaction are listed in columns denoted
R, TR, O, TO, B,and L, respectively.

The results show thatrestrict andosm_bt typically increase the
BDD size if the DC fraction is very small--less than 1%. On the
other hand, as expected, bothcompaction routines never increase
BDD size. Of all four heuristics,leaf-identifying compaction gen-
erates the smallest BDDs in most cases.

Our second experiment tested BDDs that represent the combi-
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 Figure 7: Improved result by leaf-identification
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 Figure 8: Leaf-identifying compaction

int LI-mark-edges (bdd f, bdd c) {

if (f  == bdd_one)  return (01);

bddLI-compaction (bdd f, bdd c) {

(void) LI-mark-edges(f, c);
result = LI-build-result(f);

if  (c == bdd_ zero) return (bdd_zero);

return(result);
}

x = top variable(f, c);

}

if  (c == bdd_zero) return (00);

clear-edges(f);

bddLI-build-result (bdd f) {

if  (f  == leaf) return(f);
x = top variable(f);

if (f  == bdd_zero) return (10);

f.then_mark =  f.then_mark |  temp1;  /* ‘|’ is  bitwise-or */

return (temp1| temp2);
f.else_mark = f.else_mark| temp2;

temp1  = LI-mark-edges(fx, cx);
temp2  = LI-mark-edges(fx, cx);

if  (f != fx)

if  (f.then_mark == 11) f_left = LI-build-result(fx);
else if (f.then_mark == 01) f_left = bdd_one;
elsef_left = bdd_zero;

if  (f.else_mark == 11) f_right = LI-build-result(fx);

else if (f.else_mark == 01) f_right = bdd_one;
else f_right = bdd_zero;

if  (f.then_mark == 00 and f.else_mark != 00) return f_right;
else if(f.then_mark != 00 and f.else_mark == 00) return f_left;
elsereturn (bdd_find(x, f_left, f_right));

}
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Figure 9: Leaf-identifying compaction pseudocode



national logic which makes up the finite state machine representa-
tion of each circuit. Once the reachability state analysis is finished,
the unreachable states can be set to DCs for subsequent tasks,e.g.
synthesis. We report the DC fraction for each combinational logic
block associated with a primary output. This fraction is obtained
from the Care-BDD after all non-supporting variables of the target
BDD are existentially quantified out. Table 2 summarizes our
results.

When each example is given equal weight,thresholded osm_bt
shows slightly better result than bothcompactions. If each example
is weighted by the number of nodes in its TR BDD, however,leaf-
identifying compaction yields better results in general. This sug-
gests thatleaf-identifying compaction is more effective when the
BDD size is large. To justify this trend more explicitly, Figure 10
illustrates the BDD minimization ratio vs. original BDD sizes. We
see that leaf-identifying compaction outperforms thresholded
osm_bt for all BDDs whose size is larger than 150. We believe this
is because node-splitting occurs more often in larger BDDs due to
a higher degree of node sharing.

We also explored the relationship between minimization ratio
and DC fraction. Our results in Figure 11 clearly illustrates a posi-
tive correlation between BDD minimization ratio and DC fraction.

Our compaction routines successfully completed on all exam-
ples but were sometimes significantly slower thanrestrict. Leaf-
identifying compaction shows lower runtimes thanbasic compac-
tion whenleaf-compaction yields a smaller result thanbasic com-
paction. We believe that this is becauseleaf-identifying
compaction needs to visit less nodes thanbasic compaction in
building a result. Bothcompactions are significantly faster than
osm_bt andthresholded osm_bt, which do not complete within two
hours on the four largest examples we tested. Thus, our heuristics
demonstrate a good run-time performance/reduction quality trade-
off.

5   Conclusion

We describe two low-complexity heuristics for BDD minimization
using don’t cares that guarantee non-increasing BDD sizes and
yield significantly smaller BDDs than obtained with the traditional
algorithm,restrict. These heuristics use edge-marking techniques
to inhibit the growth of sub-BDDs while still allowing some sub-
BDDs to shrink, thereby having lower peak memory usage than
restrict. This can be a significant advantage in memory-bounded
applications. In addition, the proposed BDD minimization meth-
ods may lead to significant run-time improvements for a variety of
applications, especially where the run-time of minimization can be
amortized over many operations involving the minimized BDD.
Our experimental results also demonstrate a positive correlation
between BDD minimization quality and DC fraction. This sug-
gests that a simple, yet powerful heuristics to reduce run-times
may be to selectively run BDD minimization depending on the DC
fraction.

Exploring the impact of BDD minimization using don’t cares in
logic synthesis [6] would also be interesting future work.
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Circuits   |F| Iter

DCs from reached states DCs from non-frontier states

DC fraction (%)

Avg. |F’|/|F| (%)

DC fraction (%)

Avg. |F’|/|F| (%)

R TR O TO B L R TR O TO B L

ping_pong 23 3 6.25-31.25 7.25 8.7 4.35 8.7 1.4510.14 6.25-31.25 63.77 63.77 63.77 63.77 63.77 63.77

tlc 77 8 1.56-37.5 18.67 18.67 19.81 19.81 10.0619.48 81-98.43 84.09 84.09 84.09 84.09 84.09 84.09

ctlp3 138 8 0.78-14.84 -6.07 0 -8.06 0 0 2.54 98.43-99.22 90.22 90.22 90.22 90.22 89.86 90.04

crd 151 4 0.78-16.79 -16.23 0 -16.06 0 0 0.83 91.4-99.21 68.38 68.38 68.54 68.54 68.2169.54

exampleS 292 11 0.05-1.02 -35.31 0 -36.46 0 00.56 99.85-99.95 94.08 94.08 94.08 94.0894.21 94.18

emodel 343 7 0.39-23.34 11.95 12.79 16.41 17.2 2.521.07 75.59-92.13 68.05 68.05 69.26 69.26 70.5176.51

dcnew 641 12 0-4.43 -172.28 0 -175.52 0 0 0 99.98-99.9 -23.69 19.55 -20.28 19.6 45.247.14

gigamax 789 8 0.0015-0.48 -57.78 0 -57.81 0 0 0 99.8-99.9 74.38 74.38 74.56 74.56 72.9476.2

bakery 1155 77 0-0.42 -172.57 0 -194.87 0 0 0 99.9-100 75.24 75.24 75.24 75.24 74.2976.58

abp 1262 22 0.003-2.78 -143.91 0 -147.94 0 0 0 99.86-99.9 82.99 82.99 83.16 83.16 81.1184.31

arbiter 1948 8 0.006-0.7 -32.19 0 -32.31 0 0 0 99.97-99.99 96.24 96.24 96.24 96.24 96.04 96.18

eisenberg 1972 42 0-0.001 -67.86 0 -102.55 0 0 0 96.15-97.9 83.21 83.21 83.24 83.24 79.784.35

tcp 6835 3 1.56-12.84 -55.07 0 timeout timeout 2.567.45 92-98.44 24.53 24.83 timeout timeout 32.4533.81

amp 9604 164 10e-8 -9.08 0 timeout timeout 0 0 99.9-10099.54 99.54 timeout timeout 99.54 99.54

elevator 24640 27 2e-7-0.02 -94.32 0 timeout timeout 0 0 99.9-100 88.09 88.09 timeout timeout 86.2992.96

scheduler 73145 38 2.3e-8-0.01 -37.9 0 timeout timeout 0 0 99.9-10095.5 95.5 timeout timeout 95.06 95.33

Total : equal weight for circuits N/A -53.92 2.51 1.04 3.88 N/A 72.79 75.51 77.08 79.03

Total : weighted by BDD size N/A -51.22 0.049 0.16 0.51 N/A 89 89.24 89.08 90.83

Table 1: Minimization results on monolithic transition relation BDD. (|F|: original BDD Size,Iter : reachability analysis iterations,
DC fraction: range of DC fraction,Avg. |F’|/|F|: average minimization ratio,timeout: longer than 2 hours,R: restrict, TR:
thresholded restrict,O: osm_bt,TO: thresholded osm_bt,B: basic compaction,L : leaf-identifying compaction. Best results are bold-
faced if non zero.)

Circuits ∑|F| Num. F Avg. |F|

DCs from reached states

DC fraction
(%)

Avg. |F’|/|F| (%)

R TR O TO B L

ping_pong 19 3 6.33 25-62.5 5.26 21.05 5.26 21.05 21.05 21.05

tlc 76 3 25.33 62.5 27.63 27.63 26.67 27.63 25 25

ctlp3 184 4 46 12.5-75 29.35 29.35 35.33 35.33 13.59 14.67

crd 79 5 15.8 12.5-62.5 3.8 7.59 8.8611.39 7.59 7.59

exampleS 109 6 18.17 37.5-97.3 39.45 39.4547.71 47.71 38.53 38.53

emodel 96 5 19.2 37.5-76.66 7.29 8.3317.71 17.71 1.04 6.25

dcnew 172 6 28.67 50-91.13 -2.33 5.81 2.33 7.56 9.88 9.88

gigamax 2568 10 256.8 78.13-97.46 10.01 10.32 10.71 11.0217.17 17.17

bakery 345 12 28.75 37.5-92.11 19.71 19.71 19.71 19.71 17.39 17.97

abp 674 8 84.25 25-80.66 3.12 5.19 5.93 6.23 10.8326.41

arbiter 192 16 12 25-93.75 26.56 26.56 26.56 26.56 22.4 22.4

eisenberg 408 7 58.29 56.25-70.31 16.91 16.9119.61 19.61 6.13 8.09

tcp 652 10 65.2 1.56-84.51 21.47 25 21.47 22.24 23.31 23.31

amp 509 42 12.12 50-99.87 63.85 63.85 65.9466.21 63.85 63.85

elevator 640 28 22.86 37.5-98.8 27.19 30.47 30.034.84 20.94 23.75

scheduler 477 20 23.85 37.5-78.51 12.58 12.58 12.58 12.58 6.08 6.5

Total : circuit with equal weight N/A 19.49 21.86 22.27 24.21 19.05 20.78

Total : circuit  weighted by BDD size N/A 13.67 14.9 15.55 16.29 14.31 16.5

Table 2: Minimization results on BDDs for combinational logic cones (∑|F|:
total BDD size;Num. F: number of BDDs, other notations are the same as
in Table 1. Best results are bold-faced if non-zero.)

Circuits   |F| Iter

DCs from reached states DCs from non-frontier states

DC
fraction

 (%)
Avg.
|C|

Avg. Run-times
(msec) DC

fraction
(%)

Avg.
|C|

Avg. Run-times
(msec)

R B L R B L

tcp 6835 3 1.56-12.84 73.7 56.7 170 160 92-98.44 61.33 36.7 110 106.7

amp 9604 164 10e-8 192.9 3.48 186.2 184.6 99.9-100 44 4.5 57.6 53.5

elevator 24640 27 2e-7-0.02 1906 307.8 1841.1 1814 99.9-100 777.4 130.7 333 300

scheduler 73145 38 2.3e-8-0.01 1114.2 1378.7 7094 7462.4 99.9-100 469.5 130.5 783.7 827.9

Table 3: Runtime comparisons between minimization heuristics. (Examples from
the 4 largest monolithic transition relation BDDs.Avg. |C|: average size of the Care
BDD, other notations are the same as in Table 1.)
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Figure 10: Minimization ratio vs. original BDD size.
(Examples from combinational logic BDDs. BDDs
smaller than 50 are not included. Close data points
are represented using one bar by their average.)

Figure 11: Minimization ratio vs. DC fraction in
leaf-identifying compaction. (BDDs smaller than
20 are not included.)
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