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Abstract of their method is large, but its high computational complexity pro-

In many computer-aided design tools, binary decision diagramsh'b_'lfﬁ Its a’f)plicatlontto Iar%etrl?DDsi . or (also k
(BDDs) are used to represent Boolean functions. To increase the erestrict operator and theonstrainoperator (also known as

efficiency and capability of these tools, many algorithms have bee/g€neralized-cofactorg, 9, 10] are well known BDD minimization
ieiency pabily y agorl v i@lgorithms. Both algorithms implement sibling-substitution recur-

sively. Shipleet al.[12] proposed a framework to relate these heu-
ristics and explored several variants. Their experimental results
suggest that theestrict operator and its variants are efficient in

tic algorithms that minimize the size of BDDs representing incom-
pletely specified functions by intelligently assigning don't cares to
binary values. The traditional algorithm, restrict [8], is often effec- - - ;
tive ir)ll BDD minimization, but cgn increase the [Bg)D size. We pro_terms of both run-t_lme and resultln_g BDD Size. A common prob-
pose new algorithms based on restrict which are guaranteed nevelM Of these techniques, however, is that the size of the BDD may
to increase the size of the BDD, thereby significantly reducing peak/'cré@se as a resuit of the ‘minimization’, as illustrated in Figure 1.
memory requirements. Experimental results show that our techN obvious way to avoid using a larger BDD is to compare the

: icallv vield sianifi | ller BDDs th ict. original BDD with the ‘minimized’ BDD and use the smaller one.
niques typically yield significantly smaller S than restrict We refer to this approach #@sresholding.The potential for size

1 Introduction increase, however, suggests that these methods may not produce

The efficient representation and manipulation of Boolean functionsBDDs as small as those produced by algorithms that guarantee that
is critical to many computer-aided design applications including N0 sub-BDD becomes larger.

logic synthesis, formal verification, and testing. Binary decision
diagrams (BDDs) have proven to be an efficient means of repre-
senting and manipulating many commonly used Boolean func-
tions. For BDD-based tools, the size of the BDDs can determine
their run-time efficiency, the problem size that they can handle,
and/or the quality of the circuits they synthesize [5]. Many tech-
nigues have been developed to find BDD variable orderings that
lead to compact BDDs [1, 2]. For a given variable ordering, the
BDD representation of a completely specified function is unique.
For incompletely specified functions, however, many BDDs can beé  (3) BDD to minimize ~ (b) Care-BDD (c) Result
used to represent the function, each associated with a different
assignment of don’t cares (DCs) to binary values. This paper
assumes the variable ordering is fixed and addresses the problem of This paper describesafe BDD minimization heuristicsi.e.,
finding an assignment of DCs that yields a small BDD representathey guarantee the resulting BDD is not larger than the original
tion. BDD. These algorithms are based on the observationestaict,

Finding the smallest BDD usirdpn't caresis known to be NP-  whijle always reducing the size of the target sub-BDD, can increase
complete [3] and exact techniques [4] are not applicable to mosthe size of a BDD which contains the target sub-BDD. Consider
practical applications. Therefore, heuristic algorithms have beenthe left childd of nodec in the BDD depicted in Figure 1 (a). Node
developed to address tBOD minimizationproblem. These heu- d can be reached from the root by two differpaﬁhsand has two
ristics try to maximize the instances dde sharingandsibling- different associated care sub-sets, represented bychadee in
substitution[12] during the minimization process. BDD nodes the Care-BDD depicted in Figure 1 (b).réstrict, sibling-substitu-
becomesharedif the re-assignment of DCs makes their associatedtion is applied to the right child af (replacing it withe) because
sub-functions identical. Sibling-substitution is a special case ofthe right child of the Care-BDD node corresponds to a DC,
node sharing where a child of a BDD naglés replaced by the  resulting in a smaller sub-BDD rootedatHowever, since a dif-
other child ofu, thereby removing and the child. ferent sub-BDD rooted at is needed for the other path, notle

Changet al [11] proposed a method to share multiple nodes athecomes unshared. We call this effestle splitting This splitting
each level in the BDD in top-down order. The reduction potential of ¢ leads to the overall size increase illustrated in Figure 1 (c).

We developsafeminimization heuristics by performing sibling-
substitution only on the nodes which we can guarantee will not
*This work was supported in part by a gift from Intel and a NSF CAREER Award ~5use an overall increase in BDD size. These techniques can lead
MIP-9502386. to better minimization results by preventing sibling-substitutions

o 34th Design Automation Conference that cause growth while allowing sibling-substitutions elsewhere.
Permission to make digital/hard copy of all or part of this work for personal or Compared tathresholded restricbur algorithms produced up to
classroom use is granted y\nthout fee provided tha@ copies are not _made or distrib- o .
uted for profit or commercial advantage, the copyright notice, the title of the pub- 27% smaller BDDs. The results comparedreetnct are much

lication and its date appear, and notice is given that copying is by permission of ~more dramatic, becausestrict increased the size of many BDDs
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to we tested.
lists, requires prior specific permission and /or a fee. After defining the problem and presenting relevant notations in

DAC 97, Anaheim, California . . A
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50 Section 2, we present our two techniques caiesic compaction

Figure 1: Example of restrict increasing BDD size.




andleaf-identifying compactiom Section 3. Section 4 reports our

one node in C. This occurs when no non-leaf nodes in F are shared

experimental results and we present some conclusions in Sectiorthave more than one parent) as in the BDDs depicted in Figure 2.

5.
2 Preliminaries

For this simple case, we can easily predict the structure of the min-
imized BDD as a result of sibling-substitution as follows. If an
edge between nodesandu in F matches to the 0 leaf in C, this

We denote the set of nodes of a BDD [7] with N and the set of means that the extended partial input combination represents a
edges with E. There are two types of nodes in N, leaf nodes andjon't care set in the original function. Consequently, we can
non-leaf nodes. The leaf nodes are either 0 or 1, representing theemoveu and all nodes belowand replacer’s parent with its sib-

Boolean functions 0 and 1, respectively. Each non-leaf nduses
two outgoing edges; #hen_edgeand anelse_edgeEach edge is
connected to @hild node ofu andu is the parent of the child
nodes. The two child nodes aiblings of each other. Each non-
leaf node F is associated with a Boolean variablhe child of F
reached via the then_edge is denoted Qytike other child is

ling. If u matches to a 1 leaf (care leaf) in C, thieand its descen-
dants must be preserved in the minimized result. Lastly if
matches to a non-leaf nodewill be preserved in the minimized
result even though its descendants may or may not be preserved
(depending on whether or not they match to a don’t care). In other
words, we can predict which nodes can be removed by analyzing

denoted by £ When not ambiguous, we will use F to refer both to the mapping between edges in F and nodes in C. In our basic algo-
a function and a BDD that represents the function. The size of arithm, we mark an edge in F if the child node connected to it is to

BDD F, denotediFr, is the number of nodes in F.
The domain of any single-output Boolean functibrcan be
partitioned into three subset$,, (the on-set)ffy (the off-set),

andffy. (the don't care set). A completely specified function has
ffgc empty, while an incompletely specified function has a non-
empty don't care set. Any two of these sets uniquely describes an

incompletely specified function.

An incompletely specified functiofi can be represented by a
pair of completely specified functiorfs ¢ for whichf,, O ffyp, foi
O ffof, andc = ffy, O ffog. For a given incompletely specified func-
tion ff, there are many such functioh®ach referred to as a cover
of ff, representing different partitions i into f,,, andfg.

Definition 1 Given an incompletely specified functiinf' is a
cover of ff if f'y, O ffy,, andf'os O ffgs.

In practice, [f,c] is typically given in the form of a BDD pair [F,
C]. Among all covers off, there must be at least one cofer
whose BDD F is smallest in size. Unfortunately, finding a small-
est F for a given [F,C] pair representirijis NP-complete [3], so
we consider heuristic approaches. Given [F, C], finding'ahat
is hopefully close to minimal in size is call&DD minimization
using don't caresWe call F the original BDD and'Rhe mini-
mized BDD, even though traditional algorithms can yield dn F
larger than F. (The termeducedBDD is not used because it may

be misinterpreted as a result of the reduction procedure used in

generating BDDs.)
3 Minimization Algorithms

This section develops heuristic BDD minimization algorithms that
guarantee the minimized BDD is no larger than the original. Our
algorithms consist of two phases. In the first phase, the original
BDD is preprocessed to identify nodes for which applying sibling- on

substitution doesot increase overall BDD size. In the second

phase, sibling-substitution is selectively applied to the nodes iden-

tified in the first phase.
We present two algorithms. The first one, cabbadic compac-

tion, is a simple technique that performs a subset of the sibling-

substitutions that do not causede-splitting The second one,
called leaf-identifying compactignwhich is more sophisticated,

effectively allows node-splitting in the special case that the new

node is a leaf.
3.1 Basic Compaction

To explain our basic approach we define a one-to-many map
between edges in F and nodes in C. Specifically, we say the

then_edge (else_edge) of a nada F mapsto all nodew in C for
which there exists a partial input combinatipmand an extended
versionp' with x = 1 = 0) such that F evaluatesudor p and to
Uy, (uy) for p’ and C evaluates tofor p', wherex is the variable

associated with node

Consider first the case in which each edge in F maps to exactl)f'i

be preserved, as illustrated in Figure 2.

o 1
i

F: BDD to minimize C: Care-BDD Edge-marked F
Figure 2: Identifying necessary nodes: no F nodes shared

mark-edges
—

Now, consider a general BDD in which nodes may be shared.
Then, an edge between nodeandu in F can map to multiple
nodes in C. If any of these nodes is not a DC, we can conserva-
tively assume that substitutingwith u's sibling may cause node-
splitting (i.e., nodei or a modified version of it is needed). Conse-
quently, we mark all incominthen_edgegelse_edgésfor a node
if there is any corresponding node in C that is not a DC. For exam-
ple, in Figure 3, thelse_edgef ¢ in F matches with both the 0
and 1 leaves in C and therefore it is marked. In contrestjct
performs sibling substitution if any mapped node in C is a DC.

C: Care-BDD
Figure 3: Identifying necessary nodes with shared nodes

F: BDD to minimize Edge-marked BDD

After the first phase, callemhark-edgesis completed, the sec-

d phase, we calluild-result rebuilds the BDD F solely based
on the markings on edges in F. If an edge from a nddeany of

its child nodew is not marked, themcan be safely replaced big
sibling via sibling-substitution. Otherwise,is preserved and its
children are recursively rebuilt. Figure 4 illustrates getective
sibling-substitution-based rebuilding technique on an edge-marked
BDD.

Edge-marked BDD Minimization result
Figure 4: Minimizing BDD by using marking result

Figure 5 illustrates the results of both phases of the algorithm
on the example given in Figure 1. Notice that all edges are marked
nd the result is the same BDD as the original one. That is, this
algorithm, referred to asasic compactiorprevents the BDD from



(a) BDD to minimize(b) Care-BDD (c) Edge-marked BDD  (d) Result
Figure 5: An example of basic compaction

growing.

Figure 6 presents the pseudo-codebasic compactionThe
time complexity ofmark-edgess O(CFO-0CO) because each pair of
nodes from F and C is called only once by using an operation
cache. Due to the application of another operation cdmhil-
result processes each node only once, yielding a time complexity
of O(TOFD). Clear-edgesoutine clears the edge-marking fields after
building the result and has time complexity oftB{). Conse-
quently, the overall time complexity dbasic compactionis
O(OFo-0Co), the same complexity asstrict

Basic compactionis acorrect BDD minimization, as defined
below (proof omitted).

Definition 2 A BDD minimization using don’t cares is correct if
the minimized BDD is a cover of the original BDD.
Theorem 1Basic compactiolis correct.

Now, we show thabasic compactiofis safe Recall that a BDD

minimization using don't cares is safe if the minimized BDD is

bddbasic-compaction(bdd f, bdd c) {
if (c ==bdd_ zero) return (bdd_zero);
mark-edges(f, c);
result = build-result(f);
clear-edges(f);
) return(result);
void mark-edges(bdd f, bdd c) {
if (c == bdd_ zero) return;
if (f == leaf) return;
x = top variable(f, c);
if (¢, != bdd_zero)
if (f1=f,) f.then_mark = 1;
mark-edges(f c,);
if (cx != bdd_zero)
if (f!1=1fy) f.else_mark =1,
mark-edges(f ¢);

bddbuild-result (bdd f) {
if (f == leaf) return(f);
x = top variable(f);
if (f.then_mark ==1 and f.else_mark == 0)
return (build-result(f));
else if(f.then_mark == 0 and f.else_mark == 1)
return (build-result));

else

} return (bdd_find(x, build-result(f, build-result(f)));

Figure 6: Basic compaction pseudocode

BDD if it has multiple parents, depending on sibling-substitutions

guaranteed to be no larger than the original BDDpke= OF' 0.
Theorem 2Basic compactioiis safe.

Proof: The result obasic compactiofis produced byuild-result.
Recall thatbuild-resulttakes F as its only argument and that the
nodes of F have two Boolean labels: a then_edge and an else_edg
For the purposes of this proof, it does not matter how these label
are set bynark-edgesinspection obuild-resultshows it does not
affect the status of any then_edge or else_edge. Thus, for a give
sub-BDD G of F, a call tduild-resultwith argument G always
produces the same result. Let lbe the result ofbuild-result
applied to F. It is easy to show by induction on the depth of F tha
every sub-BDD of F(including F itself) is the result of calling
build-result on some sub-BDD of F. Thus, sindmild-result
always produces the same result when applied to a given sub-BD
of F, the number of sub-BDDs of B no larger than the number of
sub-BDDs of F. Thus, the size of thei$-no larger than the size of
the F. So, we can conclude thaisic compactiolis safe[]

Intuitively, basic compactioris safe because it ensures that no
nodes will be split. This property can be deduced from the struc-
ture of build-result It creates one node for each node it visits
(which uniquely depends on the edge-marking) and visits eac o e
node at most once (because of the operation cache). SpecificallySubstitution to all remaining unmarked edges.
nodes that are not reachable from the root by a path of marked Fi9ure 7 shows an example (that is slightly different from the

o 0 ; ; one in Figure 5) where both gains contribute in minimizing the
ﬁ‘ldir%ier:i;erg SgtDYISItEd tiyiild-resultand thus not included in the BDD. First, thethen_edgédrom nodea and thehen_edgdrom the

i o ) nodeb on the right can be redirected to the 0 leaf (Gain 1). Conse-
3.2 Leaf-identifying Compaction quently thethen_edgef noded is unmarked (Gain 2). The modi-
This subsection presents an enhanced safe minimization techniquéed build-resultroutine leads to a minimized BDD with two nodes
in which a special type of node splitting is allowed. Consider the less than the original BDD. In contrakgsic compactiofeads to
set of sibling-substitutions applied to a childvith respect to its N0 minimization because basic edge-marking must mark all edges.
parentv. When the results of all the substitutions daare unique, The time complexity of this approach is almost twice as much
then the sibling-substitutions can increase the BDD size only byasbasic compactiomecause of the two-phase edge-marking rou-
the size of the unique result. Leaf nodes are special in that they aréine since each edge-marking phase requires@(Cr). If we do
essential for all non-trivial BDDs. So, the idea of new algorithm is not pursue the gain from fewer marked ed@gsirf 2, it is possi-
to accept the result of sibling-substitution if the result is a unique ble to merge the two phases of edge-marking into one. Our experi-
leaf G_e. rep|ace the edge fromto u with an edge fronv to the ments suggest that degradatlon of quallty IS negllglble. We believe
leaf). Note thatu may be preserved or replaced in the minimized this is because it is unlikely that all nodes on the paths leading to

with respect to its other parents.
This approach will usually lead to better results for two reasons.
First, a sub-BDD can be replaced by a leaf which might be pre-
erved inbasic compactionWe call this type of gain aSain 1
econd, the number of edges marked can be less thaasin
compactionbecause the edge-marking routine needs not recur
@rough edges to be redirected to leaves. This type of gain is called
ain 2. Typically, less edge-markings leads to smaller BDDs
becauséuild-resultremoves nodes connected by unmarked edges.
tNote, however, that this approach is not guaranteed to produce bet-
ter results thamasic compactiomecause the two algorithms can
result in different unshared nodes becoming shared unpredictably.
D This new approach can be implemented using a two-phase
edge-marking routine and a maodifiedild-result The first phase
of edge-marking computes the results of all possible sibling-sub-
stitutions from which it identifies the edges that can be redirected
to leaves. The second phase is similar to basic edge-marking
except that it does not recur through edges that can be redirected to
leaves. After edge marking, the modifiedild-resultroutine redi-
prects all identified edges to their annotated leaf and applies sibling



(a) BDD to minimize (b) Care BDD  (c) Edges associated with leaves (a) BDD to minimize (b) Care BDD (c) Edge-marking result ~ (d) Result

Figure 8: Leaf-identifying compaction

bddLlI-compaction (bdd f, bdd c) {
if (c == bdd_ zero) return (bdd_zero);
(void) LI-mark-edges(f, c);
result = LI-build-result(f);
clear-edges(f);
return(result);

(d) Edge-marking skipping (e) Build-result (f) Result }

edges associated with leaves  being applied int LI-mark-edges (bdd f, bdd c) {

. . X P if (c == bdd_zero) return (00);
Figure 7: Improved result by leaf-identification if (f == bdd_one) return (01):

an excessively marked edge can be redirected to a unique leaf (so if (f == bdd_zero) return (10);
that no marking is required for the edge). Thus, this comprise rep- x = top variable(f, c);
resents a good performance/run-time trade-off. templ = LI-mark-edges(fc,);
We refer to this enhanced algorithm with the above compromise temp2 = LI-mark-edgesffc);
asleaf-identifying compactioand it is given in Figure 9. Finding if (f1=1,)
and annotating nodes is performed in a preprocessing phase called f.then_mark = f.then_maiktempl; /*‘|'is bitwise-or */
LI-mark-edgesLike restrict, this phase recursively performs sib- f.else_mark = f.else_matktemp2;
ling-substitution. However, instead of returning the actual BDD return (templ temp?2);
result, it returns a classification of the result. This classification }

identifies whether the edge can be redirected to a 1 (encoded b01),  pqq|-puild-result (bdd f) {

0 (encoded b10), DC (encoded b00), or non-leaf (encoded b11). if (f == leaf) return(f);

The encoding facilitates a bitwise-OR scheme that implements the X = top variable(f): '

relative priority of non-leaves over leaves and leaves over DCs. it (f thF()en mark == 11) f_left = LI-build-resulgt
Figure 8 illustrates an example &#af-identifying compaction elsé if(f then mark == 0—1” left = bdd one: '
where one edge, thteen_edgef d, is additionally marked com- L . - -
pared to the example in Figure 7 (d). elsef_left = bdd_zero;

The overall time complexity oeaf-identifying compactiois if (f.else_mark == 11) f_right = LI-build-resulgff
the same as the complexity dfasic compactionwhich is else if(f.else_mark == 01) f_right = bdd_one;
O(OFo-oCo). elsef_right = bdd_zero;
4 Experimental Results if (f.then_mark == 00 and f.else_mark !5 @6turn f_right;
We conducted experiments to compare our two heuristics to else if(f.then_mark != 00 and f.else_mark == 00) return f_left;
restrict, thresholdedestrict, osm_b{{12] andthresholded osm_bt elsereturn (bdd_find(x, f_left, f_right));
Osm_btwas chosen among a variety of heuristics developed by }
Shipleet al because it showed the best overall results in the exam- Figure 9: Leaf-identifying compaction pseudocode

ples they tested. The heuristics were incorporated into a formal ) . .
verification tool VIS [13] and were tested on BDDs found during ©ach iteration based on the new frontier set found.

symbolic reachability analysis [14]. All experiments were run on  1h€ minimization results on the TR BDDs from the VIS-1.1
an Ultra SPARC 1/192M. example circuits are given in Table 1. We experimented with two

In our first experiment, monolithic transition relation BDDs DC sets separately. Each DC set varies from iteration to iteration.

(TR BDDs) were minimized using two types of DCs. The first DC For each ite_ration we c_alcqlate tbe fra_lction, which _is the per-
set is the state transitions whose next states are already known tg€Ntage of input combinations for which the function value is a
be reachablei.., reached states.) In particular, state transitions DC- We report its range over all iterations for each example. The
with such a next state can be removed/added to the TR BDD with@verage BDD minimization results over all iterations ristrict,

no effect on the final reachable state set [13]. The second DC set ifreésholded restrictosm_bt, thresholded osm_bt, basic compac-
derived from therontier set i.e., the set of states newly found to tion, andleaf-identifying compactloare listed in columns denoted
be reachable by the previous iteration of reachability analysis. InR» TR, O, TO, BandL, respectively. ) )

particular, state transitions in the TR BDD whose present state is__1he results show thagstrict andosm_bttypically increase the
not in thefrontier-setare don't cares [13]. After minimization, the ~BDD size if the DC fraction is very small--less than 1%. On the
next states is computed by first conjuncting the TR and frontier-setPther hand, as expected, bahmpactionroutines never increase
and then existentially quantifying out the present state variables.BPD size. Of all four heuristicsgaf-identifying compactiogen-

Note that the frontier-set based don't cares must be recalculated irfrates the smallest BDDs in most cases. _
Our second experiment tested BDDs that represent the combi-



national logic which makes up the finite state machine representa{3]
tion of each circuit. Once the reachability state analysis is finished,
the unreachable states can be set to DCs for subsequenetgsks,
synthesis. We report the DC fraction for each combinational logic
block associated with a primary output. This fraction is obtained [4]
from the Care-BDD after all non-supporting variables of the target
BDD are existentially quantified out. Table 2 summarizes our
results.

When each example is given equal weigitesholded osm_bt
shows slightly better result than batbmpactios. If each example
is weighted by the number of nodes in its TR BDD, howdgaf;
identifying compactioryields better results in general. This sug-
gests thateaf-identifying compactioiis more effective when the
BDD size is large. To justify this trend more explicitly, Figure 10
illustrates the BDD minimization ratio vs. original BDD sizes. We
see thatleaf-identifying compactionoutperforms thresholded
osm_bftfor all BDDs whose size is larger than 150. We believe this
is because node-splitting occurs more often in larger BDDs due tol7]
a higher degree of node sharing.

We also explored the relationship between minimization ratio

(5]

(6]

M. Sauerhoff and I. Wegener, “On the Complexity of Mini-
mizing the OBDD Size for Incompletely Specified Func-
tions,” IEEE Trans. Computer-Aided Design, vol. 15, pp.
1435-1437, Nov. 1996.

A. L. Oliveira, L. Carloni, T. Villa and A. Sangiovannir-Vin-
centelli, “Exact Minimization of Boolean Decision Diagrams
Using Implicit Techniques,” Technical Report UCB ERL
M96/16, University of California, 1996.

L. Lavagno, P. McGeer, A. Saldanha and A. L. Sangiovanni-
Vincentelli, “Timed Shannon Circuits: A powerful Design
Style and Synthesis Tool,” Proc. Design Automation Confer-
ence, pp. 254-260, 1995.

M. Damiani and G. De Micheli, “Don’t Care Set Specifica-
tions in Combinational and Synchronous Logic Circuits,”
IEEE Trans. Computer-Aided Design, vol. 12, pp. 365-388,
March. 1993.

R. E. Bryant, “Graph-Based Algorithms for Boolean Function
Manipulation,” IEEE Trans. Computers, vol. C-35, pp. 677-
691, 1986.

and DC fraction. Our results in Figure 11 clearly illustrates a posi- [8] O. Coudert, C. Berthet and J. C. Madre, “Verification of Syn-

tive correlation between BDD minimization ratio and DC fraction.

Our compactionroutines successfully completed on all exam-
ples but were sometimes significantly slower thestrict Leaf-
identifying compactiorshows lower runtimes tharasic compac-
tion whenleaf-compactioryields a smaller result thdasic com-
paction We believe that this is becauskeaf-identifying
compactionneeds to visit less nodes thhasic compactiorin
building a result. Botlcompactionsare significantly faster than
osm_btandthresholded osm_jivhich do not complete within two
hours on the four largest examples we tested. Thus, our heuristics
demonstrate a good run-time performance/reduction quality trade-
off.

9]

chronous Sequential Machines Based on Symbolic Execu-
tion,” Automatic Verification Methods for Finite State
systems, Springer-Verlag, pp. 365-373, 1989.

O. Coudert and J. C. Madre, “A Unified Framework for the
Formal Verification of Sequential Circuits,” Proc. Interna-
tional Conference on Computer-Aided Design, pp.126-129,
1990.

[10] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton and A. Sangio-

vanni-Vincentelli, “Implicit State Enumeration of Finite State
Machines using BDD’s,” Proc. International Conference on
Computer-Aided Design, pp.130 - 133, 1990.

[11] S. Chang, D. I. Cheng and M. Marek-Sadowska, “Minimizing

5 Conclusion

We describe two low-complexity heuristics for BDD minimization
using don't cares that guarantee non-increasing BDD sizes and

ROBDD Size of Incompletely Specified Multiple Output
Functions,” Proc. the European Design and Test Conference,
pp. 620-624, 1994.

yield significantly smaller BDDs than obtained with the traditional [12] T. Shiple, R. Hojati, A. Sangiovanni-Vincentelli, and R. K.

algorithm, restrict. These heuristics use edge-marking techniques
to inhibit the growth of sub-BDDs while still allowing some sub-
BDDs to shrink, thereby having lower peak memory usage than

Brayton, “Heuristic Minimization of BDDs Using Don't
Cares,” Proc. Design Automation Conference, pp. 225-231,
1994.

restrict This can be a significant advantage in memory-bounded[13] R. K. Brayton and et al., “VIS: A System for Verification and

applications. In addition, the proposed BDD minimization meth-
ods may lead to significant run-time improvements for a variety of

Synthesis,” Technical Report UCB/ERL M95, University of
California, Berkeley, Dec, 1995.

applications, especially where the run-time of minimization can be [14] J. R. Burch, E. M. Clarke, D. Long, K. L. McMillan and D. L.

amortized over many operations involving the minimized BDD.
Our experimental results also demonstrate a positive correlation
between BDD minimization quality and DC fraction. This sug-
gests that a simple, yet powerful heuristics to reduce run-times
may be to selectively run BDD minimization depending on the DC
fraction.

Exploring the impact of BDD minimization using don't cares in
logic synthesis [6] would also be interesting future work.
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DCs from reached states DCs from non-frontier states
Avg. |F'I/|F| (%) Avg. |FI/|F| (%)
Circuits |F| Iter ||DC fraction (%) R TR o B L |DC fraction (%) R TR o TO B L
ping.pong 23 3 6.253L.2p 745 87 1480.14|  6.25.3L.25 63.77| 63.771 63.7] 63.77 6317 637
tic 77 8 1.56-37.9 18.6 18.67 10{06.9.48 81-98.43| 84.09| 84.09 84.0 84.00 84.09 849
ctip3 138 g 0.78-14.8 -6.0[7 D 0 254 98.43-99.221 90.22| 90.22 90.2 90.2p 89.86| 90.04
crd 151 4 0.78-16.7' -16.28 0 0 0.83 91.4-99.211 68.3 68.3B 68.94 68.p4 68[2169.54
exampleS 297 il 0.05-1.92 -35.81 0 00.56 99.85-99.95 94.0 94.0B 94.98 94.p894.21( 94.18
emodel 343 0.39-23.3¢ 1195 12p9 231.07 75.59-92.13 68.0 68.0b 69.26 69.p6 70|576.51
dcnew 641 1 0-4.4 -172.28 0 -175. 0 0 99.98-99.9 -2B.69 19.55 -P0.28 19.6 4524
gigamax 789 8 0.0015-0.48  -57.18 0 0 0 99.8-99.9 74.38 4.38 74.56 74.56 | 721842
bakery 1155 7 0-0.4p -172.57 0 -194, 0 0 99.9-100 7p.24 15.24 r5.24 75.24 | 73298
abp 1262 2 0.003-2.78 -143.91 0 0 0 99.86-p9.9 §2.99 2.99 83.16 83.16 | 834131
arbiter 1948 0.006-0.y -32.19 0 0 0 99.97-99.99 96.24 6.24 P6.24 96.24 [96.04 | 96.18
eisenberg 197 42 0-0.001  -67.86 0 0 0 96.1597.9 3.21 B3.21 83.24 83.24 | 8®3b
tcp 6835 3 1.56-12.84 -55.07 0 timed 2|567.45 92-98.44| 24.53 24.88 timeoyit timeout 324533.81
amp 9604 164 10e- -9.08 0 timed 0 0 99.9-1089.54| 99.54 timeout| timeoutf 99.54| 99.54
elevator 2464( 2[ 2e-7-0.02 -94.82 0 0 99.9t100 8.09 B8.09 timeout tmeout | 8RB
scheduler 7314 38 2.3e-8-0.01 -31.9 0 timef 0 99.9-1005.5 95.5| timeout| timeoutl  95.0! 95.3B
Total : equal weight for circuits| N/A -53.92 251 1.p4 3188 /A 72079 73.51 7F.08 19.03
Total : weighted by BDD size N/A -51.22  0.049 0.L6 0f51 /A 89 89.24 8P.08 d90.83

Table 1: Minimization results on monolithic transition relation BDBJ: (priginal BDD Size ter : reachability analysis iterations,
DC fraction: range of DC fractionAvg. |F|/|F| average minimization ratidjmeout: longer than 2 hoursR: restrict, TR:
thresholded restric©: osm_bt,TO: thresholded osm_HB: basic compaction, : leaf-identifying compaction. Best results are bold-

faced if non zero.)

DCs from reached states
Avg. [FI/IF (%)
DC fraction
Circuits | s|F] |Num. F| Avg. |F| (%) R TR 0 L
ping_pong 19 3 6.3 25-62)5 526 21.05] 5.26 21.04 21.0
tlc 76 3 25.33 62.4 27.63| 27.63 26.67 25 2
ctlp3 184 4 4 12.5-7% 29.35| 29.35 35.33 14.67
crd 79 5 15. 12.5-62.5 3B 7.9 8. 7.59
exampleS 10 18.1 37.5-9713 3945 39437.71 38.53
emodel 96 5 19.4 37.5-76.46 7.29 8.317.71 6.25
dcnew 172 q 28.6[] 50-91.113 -2.33 5.1 2 9.88
gigamax 25694 1 256l¢ 78.13-97.h6 1001 1d32  1¢. 17.17
bakery 345 12 28.78 37.5-92.11 19.71| 19.71 19.7 17.97)
abp 674 8| 84.25 25-80.66 3.12 5.19 5 .826.41
arbiter 192] 14 1 25-93.76 26.56| 26.56 26.5 22.4
eisenberg 40 58.29 56.25-70.p1 16|91 14.919.61 8.09
tcp 652 10 65. 1.56-84.51 21.47 25| 21.47 23.31
amp 509 42 12.19 50-99.47 63.85 6385 65 63.85
elevator 640 24 22.80 37.5-9818  27.19 30)47 3 23.79
scheduler 471 2 23. 37.5-78.p112.58| 1258 125 6.5]
Total : circuit with equal weight N/A 19.4p 2146 22. 19.05 20.78
Total : circuit weighted by BDD sizq N/A 13.97 149 15 14.31 6.5

Table 2: Minimization results on BDDs for combinational logic coidB|(

total BDD sizeNum. F: number of BDDs, other notations are the same as

in Table 1. Best results are bold-faced if non-zero.)

DCs from reached states

DCs from non-frontier states

Avg. Run-times

Avg. Run-times

DC (msec) bDC (msec)
fraction Avg. fraction
Circuits |F| | lter (%) |IC| R B L L (%) B L
—

tcp 6835 qd| 1.56-12.84  73]7  56|7 110 160 92-99 B6.7 [110 J06

amp 9604 164 10e-p 192/9 3.48 186.2 184.6 99.9 45 |57.6
elevator | 2464Q 2J| 2e-7-0.02 1906 307.8 1841.1 1814 99.9 130.7 | 333
scheduler| 7314! qq 2.3e-8-0.p1 11142 1378.7 7094 7462.4 99. 130.5| 783.7|

Table 3: Runtime comparisons between minimization heuristics. (Example!
the 4 largest monolithic transition relation BDBsg. |C|. average size of the (

BDD, other notations are the same as in Table 1.)
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Figure 10: Minimization ratio vs. original BDD size.
(Examples from combinational logic BDDs. BBD
smaller than 50 are not included. Close data point
are represented using one bar by their average.)
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Figure 11: Minimization ratio vs. DC fraction in
leaf-identifying compaction. (BDDs smaller than
20 are not included.)
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