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error prone. It was demonstrated repeatedly, thatSMV is a very powerful and efficient
specification proof-reader.

Model checking withSMV has sufficient capacity to analyze complete specifica-
tions of real-life directory based cache coherency protocols, within the aggressive time
schedule of a computer design project. It helped us find several problems in the protocol
specification. Most of the problems would have been found in simulation, but the prob-
lems involving the interaction of processors and theI/O subsystem would only have
been found at the tail end of verification, leading to a disproportional disruption in
project schedules. There were several problems that would probably not have been
found in simulation. Finally, one protocol problem, that would never have been found
in simulation, led to loss of cache coherency, and subsequently due to the subtle symp-
toms, might not have been found in the test lab!

Model checking has not progressed to the state where a designer can analyze a
complex protocol design withSMV at the same time that he/she is designing the proto-
col; the two activities together are too time consuming. This is, in part, because the
usage ofSMV (and other model checkers) is not a turn-key activity. In our experience,
knowledge of the behavior of BDDs, and the inner workings ofSMV are crucial, when
creating tractable models. At the same time, formal analysis withSMV requires the use
of structural, behavioral, data, and temporal abstraction, which can only be accom-
plished if the person designing theSMV model has a detailed understanding of the sys-
tem being modelled. This leads us to conclude that, to successfully adopt formal
verification/analysis in industry, requires an organizational re-alignment. The formal
verification specialists, that typically have been members of a CAD/CAE group, have
to become more involved in the design process, in order to understand the designs well
enough, so they are able to create tractable formal verification models.

7. Open Issues & Future Research
We plan to verify that the processor together with the cache coherence protocol

implements the sequentially consistent and release consistent memory models, by map-
ping the protocol model onto the verification framework presented in [Gha93].

Because of model size constraints we were not able to verify the protocol for larger
configurations than 4 clusters, not for more than 1 cache line, nor with blocking in the
interconnect.
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any implementation of the protocol. These assumptions were uncovered/discovered
during the development of theSMV model. These assumptions remained unchanged
during subsequent protocol revisions.

The cut & paste typos are the errors introduced after a change in the protocol, and
are caused by the designer using a particular message response as a template for the
response to a different message, i.e. cutting, and then pasting in transactions and modi-
fying only message types. Every time that there was a change in the protocol, there were
a couple of problems caused by the fact that there were also minor changes required, in
addition to the message name change. It is very efficient to useSMV to check for these
types of the problems with anAG(never an unexpected input condition to a table) spec-
ification. In fact, once we were convinced of the utility ofSMV, one of its uses, was to
proof read the modified specification!

The protocol revision lint errors introduced after a change in the protocol, are the
errors caused by changing a certain transaction, but not changing all of the affected/
implicated transactions. Every time that there was a change in the protocol, there were
also a couple of these types of problems. These are handled the same as the cut & paste
typos.

The variables not reset at the conclusion of a transition problems, all occurred inI/
O section of the protocol. TheI/O section of the protocol has several transactions that
involve two request response pairs, that use the sameCRB entry. There were some cases
where all the relevant status bits in theCRB were not reset correctly at the conclusion
of the first request response pair.

The unanticipated input conditions are those that cause a combination of input val-
ues to a state machine that was not anticipated in the protocol specification. Most of the
errors of this type were uncovered in model configurations with both processor andI/O
clusters. The early detection of these problems using formal verification is a major
improvement over the previous methodology. In the previous methodology these prob-
lems would not have been discovered until system simulations of the processor, mem-
ory andI/O sub-systems, at the tail end of the verification phase of the project.

There were several protocol race conditions that lead to erroneous behavior, i.e.
broke protocol invariants, and led to deadlock; and one condition that led to loss of
coherency. Interestingly only one of the deadlocks was uncovered by anAG EF type of
specification, all the others were uncovered byAG invariant specifications, or anAG
(outstanding request but no messages in flight) specification. The deadlock discovered
by theAG EF specification was uncovered before we developed the method for trans-
forming deadlock detection to a safety property.

The counter-example in the case of the loss of coherency was discovered in a 3 pro-
cessor model, and consisted of 19 steps, with loss of coherency only occurring if the
intervention forwarding mechanism was used in a certain step, and the outstanding pro-
tocol messages arrived in a certain order. This problem would never have been found in
simulation, and because of the symptoms, i.e. loss of coherency would have been
exceedingly difficult to trace on the test floor.

6. Conclusions
An unexpected advantage to usingSMV is due to the size of the specification. The

protocol was revised several time, and manual editing of the specification proved to be



processor has a cached copy; and if a processor has aSHD copy, then the directory has
the bit the particular processor set in directory bit-vector. The third type ofAG specifi-
cation verifies the invariant cache relationships for all states in reachable state set.

At a particular time step theH, P, andI/O modules either non-deterministically issue
a new request or remain idle. This means that outstanding transactions can finish with-
out producing new requests. The finalAG specification verifies that requests that have
been issued are not deadlocked, by verifying that if one of the processor orI/O nodes
has an outstanding read or write request, then there are always some messages in flight.
The transformation of deadlock detection to a safety property is important because
safety properties are checked during the reachable state space exploration, and deadlock
is therefore detected faster.

The following four types of absence of deadlock properties were also verified: it is
always possible for the processors at some future time to issue each type of processor
request, it is always possible for the directory to transition into any of the possible direc-
tory states through some chain of events, each of the processor caches can always tran-
sition into any of the possible processor cache states through some chain of events, and
each of the request buffers can always be allocated and freed through some chain of
events. These properties are verified by the following specificationAG EF cond, where
cond is one of the above conditions.

The correctness property verification involved verifying that each processor andI/
O request always eventually receive the correct response, i.e.AG(request→ A(RRB/
CRB allocated U expected response). For the processors requestε {RDSH,RDEX,-
UPGRD}; and for theI/O subsystems, request is a read or write request for partial and
full cache line, and replacement/writeback of a cache line in theI/O cache. The correct-
ness properties require a fairness constraint to prevent starvation caused by messages
not being delivered to the different clusters. The constraint that is used for each message
buffer is the following: FAIR (buffer empty & message delivered | buffer empty), i.e. if
there is a message in flight, it is eventually delivered.

The atomic write property is verified by using the synchronous write specification
AG(data & data-valid→ AG(data-valid→ data)) presented in [McM93], and invoking
the equivalence between write synchronization and write atomicity theorem, presented
in [Col92] (the theorem assumes that read atomicity does not have to be obeyed).

5. Protocol Problems
We expected at the outset that formal verification methods would add value by

uncovering race condition, deadlock, and livelock problems. But formal verification
offered several unforeseen benefits, and the type of problems that we found are more
diverse than we expected. The problems can be divided into the following seven differ-
ent groups: hidden/implicit assumptions in the specification, cut & paste typos, protocol
revision lint, variables not reset at the conclusion of a transition, unanticipated state
machine input conditions, protocol race conditions leading to a violation of a protocol
invariant, and race conditions leading to protocol deadlock. We didn’t find any unantic-
ipated livelock problems, i.e. no livelock conditions that aren’t caused by an infinite
loop of NACK response messages.

The hidden/implicit assumptions of the protocol specification are those parts of the
protocol that are not explicitly in the protocol specification, but are assumed to exist in



cache coherence property is an example of a protocol safety property, and it is verified
using aCTL specification of the formAG(cond), wherecond is a boolean predicate (no
temporal operators) that expresses the relation between the state of cache lines in dif-
ferent processors. The absence of deadlock is verified with a specification of the form
AG(EFcond), wherecond is each of the possible processor, and directory states, and an
allocated or freeRRB, WRB, orCRB entry. The correctness properties are verified using
a specification of the formAG(request→ A(buffer entry allocated U response
received)).

The version ofSMV that we used, verifies the safety properties while the state space
is being explored, and checking the correctness properties is more time consuming than
checking the deadlock properties. It is therefore most efficient to verify the safety prop-
erties first, and to proceed within Table 1, from top to bottom, and from left to right.

The following four types of safety properties were verified: expected state machine
input conditions, protocol message invariants, cache coherence invariants, and a special
case of deadlock.

The specification of the protocol only contains the valid input conditions to each of
the different state machines. A state machine input error function is derived from each
state machine specification; the error function returns false for the valid input condi-
tions, but true otherwise. The first type ofAG specification verifies that an invalid input
condition never occurs in the set of reached states.

It is an invariant of the protocol that each cluster, for a given cache line, can at any
time only have at most one outstanding request to a particular cache line, that there can
be at most one invalidate/intervention targeting a particular cluster, that the number of
invalidate acknowledges can never exceed the number of processors in the model, and
that there can only be one directory cache line ownership transfer message in flight at
any time. These invariants are used to minimize the amount of buffering in the intercon-
nect: there is only one request message buffer per cluster, and one ivn/inv buffer per
cluster. If there is more than one request from the same cluster, or more than one ivn/
inv targeting the same cluster in flight at the same time, the respective buffer will over-
flow. The second type ofAG specification verifies that the interconnect buffers never
overflow; that the message invariants are true for each state in the reachable state set.

The cache coherency of a cache coherency protocol is verified with the invariant
relations between the state of a cache line in the different processors; and the invariant
relations between the state in the processors and the directory. An example of these
properties is the following: if one of the processors has aCEX orDEX copy, then no other
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tends to be strongly correlated with the state of the sender of that message (and some-
times with the receiver). For this reason, allocating an arbitrary unused buffer to a new
message will be very inefficient, since the message sender and message buffer may be
arbitrarily far apart in theBDD variable order. Instead, it is much more effective for the
user to define a function that assigns messages to buffers based on their content.

In making this assignment, there are two important considerations. First, messages
must be assigned to buffers in such a way that buffers holding information correlated
with the state of a particularP or I/O cluster can be located near that cluster in theBDD
variable order. To some extend, the need to store messages near their source or destina-
tion has to be traded off against the need to have as few buffers as possible. Second, we
have to ensure that there is always a buffer available for a given message. This can be
done based on known invariants of the protocol, and verifying as a safety property that
no message is ever blocked. As an example, a request message and the corresponding
response message typically cannot be in flight at the same time, therefore they may be
assigned to the same message buffer.

Finally, when usingBDD-based model checking, it is important to minimize the
amount of global communication (as opposed to local or nearest-neighbor communica-
tion) that occurs in one step of the model. For this reason, we used aninterleaving
model, in which only one (non-deterministically chosen) message is delivered at each
step. This can result in up to three new messages being generated. Since messages are
typically buffered near the sender, however, the typical amount ofglobal communica-
tion is just one message in a given step.

For the protocol model, theH cluster has one input message buffer; and theP and
I/O clusters require 3 message buffers each, see Figure 3. TheH input buffer is used to
store a directory ownership transfer message. TheP andI/O clusters use one buffer to
store requests originating from the particular cluster, and destined for theH module, and
also use the same buffer for response, and backed-off intervention messages. The sec-
ond buffer is used for response, and backed-off invalidate messages; and the third buffer
for intervention requests. Three message buffers are required. This can be seen for
example by addingP3 to the model shown in Figure 2. Then afterH receivesXFER, but
beforeP2 receivesESPEC, orEACK, it is possible thatH receives anRDEX fromP3, that
causes anIRDEX to be sent toP2.

4. Verification Goals
For a protocol model with 1 cache line, with a 1-bit data value, and multipleP and

I/O clusters, our goal is to verify the following properties: there’s no deadlock in the pro-
tocol; all the different processor requests, always receive the correct response; there is
never unsolicited response; the protocol guarantees cache coherence between the differ-
ent processor andI/O caches; and the protocol implements atomic write-backsWB.

Table 3 shows the different types of configurations, and properties that were veri-
fied. It was not practical, because of run times, to verify larger configurations than 4
clusters. The 1H+3P configuration requires 1G bytes of memory, 67 hours to explore the
reachable state space (100MIPS92, 150MHz Challenge machine with 1280M of mem-
ory), and each fixed-point iteration takes 20-40 minutes.

The properties that were verified can be classified as safety properties, absence of
deadlock properties, correctness properties, and memory consistency properties. The



ifying data consistency properties, and for configurations withI/O modules, each of the
H andP message buffers contain an extra bit, due to the larger number of messages.

TheH cluster receives requests from thePandI/O clusters, and also receives direc-
tory ownership transfer responses. TheP requests consist of the following: read shared
RDSH, RDEX, UPGRD, andDEX cache line writebackWB. TheI/O requests include read
and write requests for partial and full cache lines; and a replacement/writeback of a
cache line in theI/O cache. The H model decides non-deterministically to use the inter-

vention/invalidate back-off mechanism. AP andI/O cluster in addition to issuing
requests, forward backed-off ivn/inv requests; and respond to request acknowledge,
data responses, and ivn/inv messages.

The structure of the interconnection network model is very important in making
property verification tractable usingSMV. It is essential not to introduce unnecessary
detail in the interconnect model when verifying the protocol− first so as not to add
unnecessary complexity to the verification, and second, so that the protocol is verified
under the most general possible conditions in which it is intended to operate. For these
reasons, the network is modeled simply as a collection of message buffers. The decision
as to which messages (if any) to deliver at any given time is non-deterministic. Thus,
the time from sending a message to its delivery is completely arbitrary. This is accept-
able, since the protocol does not rely on any ordering properties of the network. If no
message is delivered at a given time, aP or I/O cluster is non-deterministically chosen
to issue a request; it either selects one of the possible requests or stays idle. This ensures
that the interconnect can drain all messages in flight to their destination without produc-
ing new messages.

There are other issues in modeling the network that relate specifically to the fact
thatSMV usesBinary Decision Diagram (BDD) [Bry86] based model checking. This has
several implications for the model structure.

First, to represent the reachable state set efficiently using aBDD, we need to order
the state components of the model such that, if two state components are related, then
they are close to each other in the order. In this case, the contents of a given message

Figure 3: Directory Protocol Model
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input, and next state values. The format line consists of a delimiter (#), the input vari-
able names, a delimiter marking the end of the inputs (>), followed by the output vari-
able names. Table 1 shows a section of the directory memory state machine
specification. The table fragment shown in the figure is simplified in that the rows only
produce one output message, there can be at most two; and transitions shown don’t
involve issuing of invalidates/interventions (inv/ivn) and the possible forwarding of the
issuing of the inv/ivn. The actual directory table has nine more output variables then
shown in Table 1. The format line in the Table specifies the following three input vari-
ables: input messageIMsg, current directory stateDirSt, and if the bit in the bit-vector is
set for the requesting clusterMyBit. The format line specifies the following six output
variables: the new state of the directoryNewSt, the new value of the bit in the bit-vector
NewV, the response messageOMsg1, the source of that messageOSrc1, the destination of
that messageODst1, and the memory operationMemOp. Theonly operation in theMyBit
column specifies that only the requesting cluster has a cached copy. Theset operation in
theNewV column specifies that the bit-vector for the requesting cluster is set, in addition
to any that might have been set. Theforce operation specifies that theID of the request-
ing cluster is stored in the bit-vector; the bit-vector is used to store a clusterID except
in the case where the directory state isSHRD.

The first row of the table specifies that aRDSH request to theSHRD directory state,
results in the bit of the requester being set in the bit-vector, a read being issued to the
memory, and aSRPLY being sent back to the requester. The second row specifies that a
RDEX request to theUOWN state resultsin an exclusive reply completeERPC; complete
because there aren’t any interventions or invalidates issued. The third row specifies that

a writeback requestWB to theEXCL state, where the requester has theEXCL copy, results
in a transition to theUOWN state, a writeback exclusive acknowledgeWBEAK to the
requester, and the cache line being written to memory.

There are 7 tables that specify the protocol, with a total of 580 different input con-
ditions, and 2950 different output variable valuechanges. TheSMV model of the pro-
tocol consists of 6000 lines ofSMV code: 5000 lines of protocol transitions, and 1000
lines modelling the clusters, and the interconnection network, between the clusters.

The model consists of the following three types of clusters: directory clusterH, pro-
cessor clusterP, and anI/O cluster. TheH, P, andI/O models consist of translated ver-
sions of the protocol tables (toSMV format), and logic to respond to messages, and in
the case of theP andI/O models, logic to generate the possible types of requests. The
characteristics of each model is summarized in Table 2, and the directory protocol
model in Figure 3. The N in the table, is the sum of the number ofH, P, andI/O modules.
The protocol model contains 1 cache line. A data bit is added to each model when ver-

Table 2: H, P, and I/O model characteristics

request tbl.
(rows/cols)

response tbl.
(rows/cols)

#message
buffers #state bits

H

P

I/O

138/19 1
17/13 19/11

109/29 3
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263/34 3

9+2#P+logN

33+6×logN
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performance simulations uncovered several missing transitions, and deadlock condi-
tions. The formal verification of the protocol was started at the tail end of the perfor-
mance evaluation, and in turn theRTL simulation at the tail end of the formal
verification.

After performance evaluation trade-off simulations were completed, the protocol
went through several revisions. The three primary driving forces behind the changes
were the following: Operating System (OS) requirements,RTL synthesis timing issues,
and protocol problems discovered by formal verification.

Having one source for the protocol specification has several important benefits. The
first is that that the different tools are always working with the same version of the pro-
tocol. Another is that it is possible to regression verify with the formal verification tool
after each revision to the protocol. Finally, once formal verification finds a problem in
the protocol, and regression verifies the proposed modification, the revised version of
the protocol is immediately available to theRTL simulator.

The protocol specification tables consist of a format line, followed by rows of

Modify Protocol
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ing writeback to the same cache line, and a register that stores the difference between
the number of expected invalidate messages and the number of invalidate acknowledge
messages. TheWRB has the following fields: a flag to indicate if the writeback was the
target of an intervention, and a flag to indicate that there was a read request from the
same processor targeting the cache line being written back to memory.

2.2 I/O Protocol
The I/O section of the protocol implements transfers from anI/O device into the

memory address space of some program; and also the transfer from memory toI/O
devices. TheI/O section is interfaced to anI/O cache which it uses for partial writes. Par-
tial I/O writes are performed by first obtaining an exclusive copy and then modifying
the exclusive copy in theI/O cache.I/O can also do uncached block and partial reads,
and writes. TheI/O can be an owner of an exclusive cache line, but can never have a
shared copy. There’s a coherent request buffer CRB for each outstanding request. The
CRB has fields that are a subset of theRRB fields.

As an example, anI/O cache line writeWINV, that writes a cache line into memory,
is shown in Figure 4. Initially the cache line in processorP1, the directoryH, and theI/
O1 clusterhave aCEX, EXCL in P1, andINV state, respectively. ThenH receives aWINV,
and responds toI/O1 with aWINV completionWSPEC message and issues an interven-
tion removeIRMVE message toP1; or responds toI/O1 with a back-off intervention
removeBRMVE message, that in turn issues theIRMVE message. The processorIRMVE
response, consists of a remove acknowledgeRACK message toI/O1, and a cached copy
purged (PURGE) transfer message toH.

In all the cache coherency protocol consists of 58 different types of coherence mes-
sages: 32 of which ensure consistency between processors, and 26 that are used when
moving data fromI/O devices into coherent space, or coherent space toI/O devices.

3. Design Workflow & SMV Pr otocol Model
The protocol specification consists of a collection of multiple input, multiple output

state machine tables, that determine the response to incoming messages in terms of state
changes and outgoing messages. The tables serve as input to a performance simulator,
SMV, verilogRTL state machine generation, and to a text processor specification docu-
ment generator.

An overview of the design workflow is shown in Figure 5. During the early phases
of the project, protocol design alternatives were evaluated, for the processor portion of
the protocol, using a trace driven performance simulator. This simulator was turned into
an effective verification tool by monitoring, that no processor in the model is hung. The

Figure 4: protocol example,WINV to an EXCL state
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exclusive transfer of ownership message (XFER), thatP2 is the exclusive owner of the
cache line. Note that theESPEC, andEACK (or BRDEX in the back-off case) messages
could arrive atP2 in either order. Also theXFER might still be in flight when another
request arrives atH. Another protocol example, an upgrade (UPGRD) to a shared (SHRD)
state is shown in Figure 3. Initially the cache line in processorP1, the directoryH, and
processorP2 have a sharedSHD, SHRD in P1, andINV state, respectively. ThenH
receives anUPGRD request fromP2, responds toP2 with an upgrade acknowledge
UPACK message, and either issues an invalidate message toP1; or a back-off invalidate
BINV message toP2, that in turn issues theINVAL message. In general theINVAL is issued
to all clusters that have their bit set in the directory bit-vector. TheUPACK message con-
tains the number of invalidate acknowledge(IVACK) messages that will be received. In
the case of back-off, theBINV message contains a copy of the bit-vector.

2.1 Directory Cache Scheme
A directory memory entry can be in several states including the following:

unowned by any clusterUOWN, SHRD, EXCL, and busy intervening or invalidating
(BUSY). If the state isSHRD, the directory stores a bit-vector with a bit set for clusters
that have aSHD copy. If instead the state isEXCL or BUSY, it stores theID of the owning
cluster.

A processor cache-line can have one of four states:INV, SHD, CEX, and dirty exclu-
siveDEX. A processor executes instructions speculatively, can have several pending
read requests, but the instructions complete in program order. The processor appears to
execute cached memory with strong ordering, i.e. it appears to the programmer that the
memory operations are executed in exactly the same order as the corresponding instruc-
tions were executed in the program. Strong ordering in the processor depends on the
implementation of the coherence protocol in the memory system. It is possible to design
a memory system that does not return data in strongly ordered fashion, allowing weak
consistency models to be employed. In this case the processor uses a fence instruction
to control sequencing of memory operations. The fence instruction guarantees that the
entire system has completed all previous memory instructions, before any subsequent
instructions accessing memory can become visible to the programmer.

The cluster coordinator has a read request buffer RRB entry for each outstanding
processor read request, and a write request buffer WRB entry for each outstanding write-
back. EachRRB entry has several fields including the following: a field to indicate if the
particular read request is the target of an intervention or invalidation request, a flag to
indicate if the data has been given to the processor, a flag to indicate that the read request
acknowledge has been received, a flag to indicate that the read request targeted a pend-
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0:SHRD P1

0:SHD 0:SHD1:UPGRD2:INVAL

2:UPACK

3:IVACK

2:EXCL P2

3:INV 4:CEX HP1 P2
0:SHRD P1

0:SHD 0:SHD1:UPGRD

2:UPACK,BINV

4:IVACK

2:EXCL P2

4:INV 5:CEX

3:INVAL

Figure 3: protocol example, UPGRD to a SHRD state



that at any time, different processor andI/O caches contain coherent values for the same
memory location, and that the order of writes to different locations, as seen from the
programmer, are consistent with the memory consistencymodel. The coherence proto-
col that we verify is invalidation based, and together with the processor [Hei94], sup-
ports both the sequentially consistent, and release consistent memory models
[Adv93,Gha90,Gha93]. The directory memory stores information about the state of a
particular cache line. The protocol is non-blocking, i.e. never buffers requests at the
directory memory. If the memory does not have ownership, the directory state is modi-
fied to signal that the request was handled and the request is forwarded as an interven-
tion or invalidate to the processor that does have ownership. An invalidate (inv) is
forwarded if a processor has a shared copy, otherwise there’s an intervention (ivn). In
order to be independent of a specific network topology, the protocol does not rely on
network ordering.

A protocol example, a read exclusive (RDEX) to an exclusive (EXCL) state is shown
in Figure 2. The numbers before the message, or state, gives the order of receipt. Ini-
tially the cache line in processorP1, the directoryH, and processorP2 have a clean

exclusive (CEX), EXCL in P1, and invalid (INV) state, respectively. ThenH receives an
RDEX request fromP2, responds toP2 with an exclusive speculative replyESPEC, and
either issues an exclusive interventionIRDEX toP1, or if H lacks resources, forwards the
issuing of the intervention toP2 using a back-off exclusive interventionBRDEX mes-
sage. TheBRDEX message contains the clusterID of P1. When theIRDEX reachesP1, it
replies directly toP2 with an exclusive acknowledge (EACK), and informsH, using an

PnP0

Interconnect

Cluster

Cluster1

Clustern-1

Cluster2

Clustern

Figure 1: Architecture of a Distributed Shared Memory machine
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Figure 2: protocol example, RDEX to an EXCL state
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properties. In contrast to formal verification: conventional simulation methodology can
be viewed as verifying that a system model conforms to the diagnostic test suite, i.e the
specification of the design consists of the diagnostic tests. The inherent problem with
this approach is the writing of diagnostics that sufficiently cover all the possible behav-
iors of the system. The Everest/Challenge system[Gal92], for example, is testimony to
the fact that conventional simulation techniques can be very powerful. But it is also
clear that parts of that system, i.e. protocols that govern the interaction of the processor,
memory, andI/O sub-systems have so many possible cases of interactions, that it is very
difficult to verify them with conventional simulation.

We choseSMV [McM93] to formally verify the protocol specification. The stron-
gest reason, from an industry perspective, is thatSMV has been successfully used to ver-
ify the specifications of other cache coherency protocols [Cla93,Lon93,McM91].
Another reason for choosingSMV, is that it can be easily integrated with the existing
design workflow within the company. Finally, the third reason for selectingSMV is that
source code is available in case there are problems with the tool.

We did evaluate several other approaches vis-a-visSMV: the VOSS [Bry91,Seg93]
finite state machine trajectory analysis tool, the COSPAN [Kur94] finite automatonω-
language containment tool, and the HOL [Gor88] higher-order logic proof assistant.

The VOSS tool was not chosen because it is designed to verify implementations of
interacting state machines, and as such it lacks the proper behavioral and temporal
abstraction capabilities that are necessary to verify protocol specifications. The tool
does not accept non-deterministic state machines, which are essential when verifying
abstract models. Also the tool restricts temporal specifications to the always-in-next-
stateAX  operator, but does not have theCTL eventually operators (e.g always-eventu-
ally AF, always-condition1-until-condition2AU, and exists-eventuallyEF), that are nec-
essary to verify non-deterministic models.

The COSPAN tool is built on powerful theory that uses a property specific refine-
ment capability to counter computational complexity, and the state explosion problem.
We did not pursue the use of COSPAN because we could not find any protocol verifica-
tion case studies in the literature comparable to the ones cited forSMV.

Finally theHOL approach was not considered because it is manually intensive, and
has mostly been successful in reasoning about data paths; exception [Low90]. Whereas
the protocol specification is control logic dominated, and contains practically no data
paths.

The rest of the paper is organized as follows. We first give a brief description of the
protocol, then in turn describe the verification environment, the formal verification
methodology, the types of design problems uncovered, and finally describe, as seen
from our perspective, the open issues and future research.

2. Distributed Shared Memory Machines
Directory based distributed shared memory machines (DSM) [Len92, Tan95], see

Figure 1, consist of clusters of one or more processors, physical memory, directory
memory, a cluster controller, I/O devices, and interconnect between the different clus-
ters. A programmer of aDSM class machine is presented with a single, linear, virtual
address space that is shared among all the processes running on clusters, that have dis-
tributed physical memory. The cache coherency protocol is the set of rules that ensure
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Abstract. We present a case study of the use of formal verification methods in a com-
puter system design project. The SMV model checker was integrated into the project
design flow, and used to verify a specification of a cache coherency protocol for a dis-
tributed shared memory machine. Both the processor and I/O portions of the protocol
description were verified, within the strict time schedule of the overall project.
We consider the following to be the three main benefits to using the SMV model
checker: it’s an effective proof reader of large specifications, which facilitates faster
design changes; it allows the verification of the interaction of the processors and I/O
early in the design phase; and most importantly it uncovered several protocol specifi-
cation problems. One problem it uncovered, would never have been found in simula-
tion, and because of its subtle symptoms, loss of coherency, might not have been found
on the test floor.

1. Intr oduction
The paper presents the results of integrating the use of formal verification methods

with conventional computer system design methodology. The type of problem seen in
the test lab, e.g. state machine deadlock, motivated us to evaluate the use of formal ver-
ification methods in the design of computer systems [Gup92,Yoe90]. A problem seen in
the test lab typically involves the interaction of many state machines, and is only
observable after some unusual chain of events. The size of the state space for these
interacting state machines is far too large to make a thorough verification feasible with
conventional simulation methods. We also observe that future generations of machines;
because of their increased complexity, will exacerbate the verification problem.

The pilot formal verification project involved the verification of a cache coherency
protocol in a directory based, distributed shared memory, machine [Len92, Tan95]. The
evaluation of available formal verification tools and methodologies, and the design of
the machine, was started at the same time. Then the formal verification of the protocol
with the chosen tool, once the protocol specification was stable. To be considered suc-
cessful, the pilot project had to demonstrate a quantum leap increased verification value
due to formal verification methods, within the strict time schedule of the project. Spe-
cifically, the chosen tool and methodology had to find problems in the protocol specifi-
cation, beforeRTL coding commenced.

A system model is formally verified by showing, with mathematical techniques,
that it conforms to the specified properties. As an example, the properties we might wish
to verify for a protocol specification are the absence of deadlock, and that a processor
request, always receives the expected response. Formal verification amounts to exhaus-
tively, for all possible cases, verifying that a particular model satisfies the specified


