[Cla93]

[Col92]

[Gal92]

[Gha90]

[Gha93]

[Gorgsg]
[Gup92]
[Heio4]
[Kur94]

[Len92]

[Lon93]

[Low90]

[McM91]

[McM93]

[Seg93]

[Tan95]
[Yoe90]

E. M. Clarke, O. Grumbgr H. Hirashi, S. Jha, D.E. Long, K.L.
McMillan, and L. A. Ness, “¥rification of the Futurebus+ cache coher-
ence protocol”, Proc.1th Intl. Symp. on ComputeHardware Descrip-
tion. Lang. and their Application, 1993

W. W. Collier, “Reasoning about Parallel Architectures”, Prentice-Hall,
Englewood Clifs, New Jersgyl992

M. Galles, E. Williams, “Performance Optimization, Implementation, and
Verification of the SGI Challenge Multiprocessor”, Hot Chips Sympo-
sium, Stanford, 1993.

K. Gharachorloo, D. Lenoski, J.LaudonGtbbons, A. Gupta, and J.
Hennessy'Memory Consistency and Event Ordering in Scalable Shared-
Memory Multiprocessors”, Proc. 17th Ann Int'l Symp. on Computer
Architecture, ACM, pp. 15-26, 1990.

K. Gharachorloo, S. \Adve, A. Gupta, J. L. Hennesseynd M. D. Hill,
“Specifying System Requirements for Memory Consistency Model-
s”,University of Wsconsin-Madison Comp. Scie@h. Report #199.

M. J. C. Gordon (ed), “HOL: A Proof-Generating System for Higher
Order Logic”, Kluwer SECS 35, pp. 73-128, 1988.

A. Gupta, “Formal Hardwareéyification Methods: A Survey”, Formal
Methods in System Design”oV/ 1, 2/3, pp. 5-92, Oct. 1992.

Joe Heinrich, “MIPS R10000 Microprocessor Usévlanual”’, MIPS
Technologies, Inc., 2AIN. Shoreline, Mountainigw, CA, 1994

R. P Kurshan, “ComputeAided \erification of Coordinating Processes:
The Automata-Theoretic Approach”, Princeton University Press, 1994
D. Lenoski, J. Laudon, K. Gharachorloo,-/\Weber A. Gupta, J. Hen-
nessyM. Horowitz, M. Lam, “The Stanford Dash Multiprocessor”, IEEE
Computervol. 25, pp. 63-79, March 1992.

D. E. Long, “Model Checking, Abstraction and Compositioratifica-
tion”, Ph.D. Thesis, CMU 1993

P. Lowenstein, D. L. Dill, “\érification of a Multiprocessor Cache Proto-
col using Simulation Selations and Higl@rder Logic”. Formal Meth-
ods in System Design”,0l. 1, Num 4, Dec. 1992, pp. 355-383

K. L. McMillan, J. Schwalbe, “Formaléfification of the Encore
Gigamax cache consistency protocol.”, Int. Symposium on Shared Mem-
ory Multiprocessors, 1991.

K. L. McMillan, “Symbolic Model Checking”, Kluwer Academic Pub-
lishers, 1993

C. J. SegerR. E. Bryant, “Formal &fification by Symbolic Evaluation of
Partially-Ordered fiajectories”, €ch. Report 93-8, Dept. of Computer
Science, University of British Columbia, Aug. 1993.

A. S. Tanenbaum, “Distributed Operating Systems”, Prentice-Hall, 1995
M. Yoeli, “Formal \érification of Hardware Design”, IEEE Computer
Society Press, Los Alamitos, CA 1990.

error prone. It was demonstrated repeatagtSMV is a very powerful and i€ient
specification proof-reader

Model checking wittBMV has suicient capacity to analyze complete specifica-
tions of real-life directory based cache coherency protocols, within the aggressive time
schedule of a computer design project. It helped us find several problems in the protocol
specification. Most of the problems would have been found in simulation, but the prob-
lems involving the interaction of processors andbeubsystem would only have
been found at the tail end of verification, leading to a disproportional disruption in
project schedules. There were several problems that would probably not have been
found in simulation. Finallyone protocol problem, that would never have been found
in simulation, led to loss of cache cohereraryd subsequently due to the subtle symp-
toms, might not have been found in the test lab!

Model checking has not progressed to the state where a designer can analyze a
complex protocol design withMV at the same time that he/she is designing the proto-
col; the two activities together are too time consuming. This is, in part, because the
usage oMV (and other model checkers) is not a turn-key actiliitpur experience,
knowledge of the behavior of BDDs, and the inner workingaw{f are crucial, when
creating tractable models. At the same time, formal analysisSiMthrequires the use
of structural, behavioral, data, and temporal abstraction, which can only be accom-
plished if the person designing tA®V model has a detailed understanding of the sys-
tem being modelled. This leads us to conclude that, to successfully adopt formal
verification/analysis in industryequires an ganizational re-alignment. The formal
verification specialists, that typically have been members of a CAD/CAE group, have
to become more involved in the design process, in order to understand the designs well
enough, so they are able to create tractable formal verification models.

7. Open Issues & Future Research
We plan to verify that the processor together with the cache coherence protocol

implements the sequentially consistent and release consistent memory models, by map-
ping the protocol model onto the verification framework presented in [Gha93].

Because of model size constraints we were not able to verify the protocoyéor lar
configurations than 4 clusters, not for more than 1 cache line, nor with blocking in the
interconnect.

8. Acknowledgment
The authors are indebted to Jim Laudoititon Graphicsinc., the designer of

the cache coherency protocol. The formal verification of the protocol would not have
been successful without his strong support.

9. References
[AdvO3] S. V. Adve, “Designing Memory Consistency Models For Shared-Mem-

ory Multiprocessors”, Ph.D. Thesis, U ofistlonsin-Madison, 1993.
[Bry86] R. E. Bryant, “Graph Based Algorithms for Boolean Function Manipula-
tion”, IEEE Trans. on Comp., C-35, pp. 677-681, 1986.
[Bry91] R. E. Bryant, D. L. Beatfyand C. J. SegeiFormal Hardware ¥fification
by Symbolic Brnary Tajectory Evaluation”, Proc. 28th ACM/IEEE
Design Automation Conf., 1991

any implementation of the protocol. These assumptions were uncovered/discovered
during the development of ti8MV model. These assumptions remained unchanged
during subsequent protocol revisions.

The cut & paste typos are the errors introduced after a change in the protocol, and
are caused by the designer using a particular message response as a template for the
response to a dérent message, i.e. cutting, and then pasting in transactions and modi-
fying only message types. Every time that there was a change in the protocol, there were
a couple of problems caused by the fact that there were also minor changes required, in
addition to the message name change. It is véigresft to usesMV to check for these
types of the problems with &G (never an unexpected input condition to a tabjeec-
ification. In fact, once we were convinced of the utilitysdfv, one of its uses, was to
proof read the modified specification!

The protocol revision lint errors introduced after a change in the protocol, are the
errors caused by changing a certain transaction, but not changing all déthedaf
implicated transactions. Every time that there was a change in the protocol, there were
also a couple of these types of problems. These are handled the same as the cut & paste
typos.

The variables not reset at the conclusion of a transition problems, all occurred in
O section of the protocol. TH& section of the protocol has several transactions that
involve two request response pairs, that use the §®@Bentry There were some cases
where all the relevant status bits in @B were not reset correctly at the conclusion
of the first request response pair

The unanticipated input conditions are those that cause a combination of input val-
ues to a state machine that was not anticipated in the protocol specification. Most of the
errors of this type were uncovered in model configurations with both processa and
clusters. The early detection of these problems using formal verification is a major
improvement over the previous methodololgythe previous methodology these prob-
lems would not have been discovered until system simulations of the processor
ory andl/O sub-systems, at the tail end of the verification phase of the project.

There were several protocol race conditions that lead to erroneous belavior
broke protocol invariants, and led to deadlock; and one condition that led to loss of
coherencylinterestingly only one of the deadlocks was uncovered ByGeEF type of
specification, all the others were uncovered\Byinvariant specifications, or aAG
(outstanding equest but no messages in fljgdgecification. The deadlock discovered
by theAG EF specification was uncovered before we developed the method for trans-
forming deadlock detection to a safety property

The countelexample in the case of the loss of coherency was discovered in a 3 pro-
cessor model, and consisted of 19 steps, with loss of coherency only occurring if the
intervention forwarding mechanism was used in a certain step, and the outstanding pro-
tocol messages arrived in a certain ordérs problem would never have been found in
simulation, and because of the symptoms, i.e. loss of coherency would have been
exceedingly dificult to trace on the test flaor

6. Conclusions
An unexpected advantage to us8igV is due to the size of the specification. The

protocol was revised several time, and manual editing of the specification proved to be

processor has a cached copy; and if a processordiis @py then the directory has
the bit the particular processor set in directory bit-vedtoe third type oAG specifi-
cation verifies the invariant cache relationships for all states in reachable state set.

At a particular time step the P, andl/O modules either non-deterministically issue
a new request or remain idle. This means that outstanding transactions can finish with-
out producing new requests. The fiad specification verifies that requests that have
been issued are not deadlocked, by verifying that if one of the proces§bnodes
has an outstanding read or write request, then there are always some messages in flight.
The transformation of deadlock detection to a safety property is important because
safety properties are checked during the reachable state space exploration, and deadlock
is therefore detected faster

The following four types of absence of deadlock properties were also verified: it is
always possible for the processors at some future time to issue each type of processor
request, it is always possible for the directory to transition into any of the possible direc-
tory states through some chain of events, each of the processor caches can always tran-
sition into any of the possible processor cache states through some chain of events, and
each of the request bafs can always be allocated and freed through some chain of
events. These properties are verified by the following specifica@deF cond, where
cond is one of the above conditions.

The correctness property verification involved verifying that each processtr and
O request always eventually receive the correct responseGiequest- A(RRB/
CRB allocated U expected response). For the processors reqResH,RDEX,-
UPGRD}; and for thel/O subsystems, request is a read or write request for partial and
full cache line, and replacement/writeback of a cache line iidreache. The correct-
ness properties require a fairness constraint to prevent starvation caused by messages
not being delivered to the tkfrent clusters. The constraint that is used for each message
buffer is the following: RIR (buffer empty& message delivered | thef empty), i.e. if
there is a message in flight, it is eventually delivered.

The atomic write property is verified by using the synchronous write specification
AG(data & data-valid- AG(data-valid— data)) presented in [McM93], and invoking
the equivalence between write synchronization and write atomicity theorem, presented
in [Col92] (the theorem assumes that read atomicity does not have to be obeyed).

5. Protocol Problems
We expected at the outset that formal verification methods would add value by

uncovering race condition, deadlock, and livelock problems. But formal verification
offered several unforeseen benefits, and the type of problems that we found are more
diverse than we expected. The problems can be divided into the following ségen dif
ent groups: hidden/implicit assumptions in the specification, cut & paste typos, protocol
revision lint, variables not reset at the conclusion of a transition, unanticipated state
machine input conditions, protocol race conditions leading to a violation of a protocol
invariant, and race conditions leading to protocol deadloekdidht find any unantic-
ipated livelock problems, i.e. no livelock conditions that a@reatsed by an infinite
loop of NACK response messages.

The hidden/implicit assumptions of the protocol specification are those parts of the
protocol that are not explicitly in the protocol specification, but are assumed to exist in

cache coherence property is an example of a protocol safety prepeliyis verified

using aCTL specification of the forraG(cond), wherecond is a boolean predicate (no
temporal operators) that expresses the relation between the state of cache lines in dif-
ferent processors. The absence of deadlock is verified with a specification of the form
AG(EF cond), wherecond is each of the possible processord directory states, and an
allocated or fre®RB, WRB, or CRB entry The correctness properties are verified using

a specification of the formG(request- A(buffer entry allocated U response

received)).

The version oMV that we used, verifies the safety properties while the state space
is being explored, and checking the correctness properties is more time consuming than
checking the deadlock properties. It is therefore mdisiexit to verify the safety prop-
erties first, and to proceed withiafle 1, from top to bottom, and from left to right.

pr%%fgrt ieg deadlockcorrectness F{,‘\Eﬁg?
1H+2P v v v v
1H+1P+11/O v v \% -
1H+2I/0 Y v v _
1H+3P v v v v
1H+2P+11/Q v v Y _
1H+3I/0 v v v _
Table 3: configurations that wee verified

The following four types of safety properties were verified: expected state machine
input conditions, protocol message invariants, cache coherence invariants, and a special
case of deadlock.

The specification of the protocol only contains the valid input conditions to each of
the diferent state machines. A state machine input error function is derived from each
state machine specification; the error function returns false for the valid input condi-
tions, but true otherwise. The first typead specification verifies that an invalid input
condition never occurs in the set of reached states.

It is an invariant of the protocol that each clushara given cache line, can at any
time only have at most one outstanding request to a particular cache line, that there can
be at most one invalidate/interventiorgeting a particular clustethat the number of
invalidate acknowledges can never exceed the number of processors in the model, and
that there can only be one directory cache line ownership transfer message in flight at
any time. These invariants are used to minimize the amountfefibgfin the intercon-
nect: there is only one request messagtebpgr clusterand one ivn/inv bidiér per
cluster If there is more than one request from the same clustarore than one ivn/
inv tamgeting the same cluster in flight at the same time, the respectfee wilf over-
flow. The second type @fG specification verifies that the interconnectfers never
overflow; that the message invariants are true for each state in the reachable state set.

The cache coherency of a cache coherency protocol is verified with the invariant
relations between the state of a cache line in tlierdift processors; and the invariant
relations between the state in the processors and the diréatoexample of these
properties is the following: if one of the processors leBsxeor DEX copy, then no other

tends to be strongly correlated with the state of the sender of that message (and some-
times with the receiver). For this reason, allocating an arbitrary unuded toué new
message will be very infggient, since the message sender and messafge m#y be
arbitrarily far apart in th&DD variable orderinstead, it is much morefettive for the
user to define a function that assigns messagesferbbhsed on their content.

In making this assignment, there are two important considerations. First, messages
must be assigned to befs in such a way that Hefs holding information correlated
with the state of a particul®or1/0 cluster can be located near that cluster irB
variable orderTo some extend, the need to store messages near their source or destina-
tion has to be tradedfaigainst the need to have as fewfers as possible. Second, we
have to ensure that there is always ddrdvailable for a given message. This can be
done based on known invariants of the protocol, and verifying as a safety property that
no message is ever blocked. As an example, a request message and the corresponding
response message typically cannot be in flight at the same time, therefore they may be
assigned to the same messagéduf

Finally, when usind3DD-based model checking, it is important to minimize the
amount of global communication (as opposed to local or nearest-neighbor communica-
tion) that occurs in one step of the model. For this reason, we usadrésaving
model, in which only one (non-deterministically chosen) message is delivered at each
step. This can result in up to three new messages being generated. Since messages are
typically bufered near the senddroweverthe typical amount ajlobal communica-
tion is just one message in a given step.

For the protocol model, the cluster has one input messageféyfand the? and
I/0 clusters require 3 messagefbu$ each, see Figure 3. THenput bufer is used to
store a directory ownership transfer message Pldrall/O clusters use one Hef to
store requests originating from the particular clysted destined for thé¢ module, and
also use the same lerf for response, and backed-mitervention messages. The sec-
ond bufer is used for response, and backefdmfalidate messages; and the thirdfeuf
for intervention requests. Three messagéebsifare required. This can be seen for
example by adding3to the model shown in Figure 2. Then afieeceives<FER, but
beforeP2receive€ESPEC, or EACK, it is possible that receives aRDEX from P3 that
causes afRDEX to be sent t@2

4. \erification Goals
For a protocol model with 1 cache line, with a 1-bit data value, and muHtgsid

I/0 clusters, our goal is to verify the following properties: treeng’ deadlock in the pro-
tocol; all the diferent processor requests, always receive the correct response; there is
never unsolicited response; the protocol guarantees cache coherence between-the dif
ent processor antb caches; and the protocol implements atomic write-bagks

Table 3 shows the dédrent types of configurations, and properties that were veri-
fied. It was not practical, because of run times, to verifyelaconfigurations than 4
clusters. TheH+3P configuration requires 1G bytes of mem6@hours to explore the
reachable state space (100MIPS92, 150MHz Challenge machine with 1280M of mem-
ory), and each fixed-point iteration takes 20-40 minutes.

The properties that were verified can be classified as safety properties, absence of
deadlock properties, correctness properties, and memory consistency properties. The

ifying data consistency properties, and for configurationsv@timodules, each of the

H andP message bidrs contain an extra bit, due to thegler number of messages.
TheH cluster receives requests from thendI/O clusters, and also receives direc-

tory ownership transfer responses. Pirequests consist of the following: read shared

RDSH, RDEX, UPGRD, andDEX cache line writebackB. Thel/O requests include read

and write requests for partial and full cache lines; and a replacement/writeback of a

cache line in th&#O cache. The H model decides non-deterministically to use the inter-

- 2msgs

- msg

buffer
map

N

Figure 3: Directory Protocol M odel

3msgs

vention/invalidate back-6mechanism. A andl/O cluster in addition to issuing
requests, forward backedf@fn/inv requests; and respond to request acknowledge,
data responses, and ivn/inv messages.

The structure of the interconnection network model is very important in making
property verification tractable usiigV. It is essential not to introduce unnecessary
detail in the interconnect model when verifying the proteciist so as not to add
unnecessary complexity to the verification, and second, so that the protocol is verified
under the most general possible conditions in which it is intended to operate. For these
reasons, the network is modeled simply as a collection of mességys biifie decision
as to which messages (if any) to deliver at any given time is non-deterministic. Thus,
the time from sending a message to its delivery is completely arbifit@syis accept-
able, since the protocol does not rely on any ordering properties of the network. If no
message is delivered at a given time,a I/O cluster is non-deterministically chosen
to issue a request; it either selects one of the possible requests or stays idle. This ensures
that the interconnect can drain all messages in flight to their destination without produc-
ing new messages.

There are other issues in modeling the network that relate specifically to the fact
thatSMV usesBinary Decision Diagram (BDD)Bry86] based model checking. This has
several implications for the model structure.

First, to represent the reachable state $ietezitly using 8BDD, we need to order
the state components of the model such that, if two state components are related, then
they are close to each other in the arttethis case, the contents of a given message

input, and next state values. The format line consists of a delimiter (#), the input vari-
able names, a delimiter marking the end of the inputs (>), followed by the output vari-
able names.dable 1 shows a section of the directory memory state machine
specification. The table fragment shown in the figure is simplified in that the rows only
produce one output message, there can be at most two; and transitions shbwn don’
involve issuing of invalidates/interventions (inv/ivn) and the possible forwarding of the
issuing of the inv/ivn. The actual directory table has nine more output variables then
shown in Bble 1. The format line in thealble specifies the following three input vari-
ables: input messagdisg, current directory stateirs, and if the bit in the bit-vector is

set for the requesting clustdyBit. The format line specifies the following six output
variables: the new state of the directbews, the new value of the bit in the bit-vector
NewV, the response messagdsgl, the source of that messag@cl, the destination of

that messageDst1, and the memory operatiddemOp. Theonly operation in théyBit
column specifies that only the requesting cluster has a cached begst operation in
theNewV column specifies that the bit-vector for the requesting cluster is set, in addition
to any that might have been set. Téree operation specifies that ti® of the request-

ing cluster is stored in the bit-vector; the bit-vector is used to store a ¢iugbecept

in the case where the directory stateH&D.

The first row of the table specifies tha@cH request to theHRD directory state,
results in the bit of the requester being set in the bit-vexrt@ad being issued to the
memory and aSRPLY being sent back to the requesiidre second row specifies that a
RDEX request to the#OWN state results an exclusive reply compleERPC; complete
because there areminy interventions or invalidates issued. The third row specifies that

request tbl. | response tbl| #message .
(rows/cols) | (rows/cols) buffers #state bits
H 138/19 1 9+2#P+logN
17/13 19/1
P 109/29 3 33+6xlogN
15/13 263/34
I/O 19/13 3 42+6xlogN

Table Z2: H, P, and 170 model characteristics

a writeback requestB to theEXCL state, where the requester hasgkeL copy, results
in a transition to th&#OWN state, a writeback exclusive acknowledggEAK to the
requesterand the cache line being written to memory
There are 7 tables that specify the protocol, with a total of 5&¥efift input con-
ditions, and 2950 dérent output variable valughanges. TheSMV model of the pro-
tocol consists of 6000 lines 8MV code: 5000 lines of protocol transitions, and 1000
lines modelling the clusters, and the interconnection network, between the clusters.
The model consists of the following three types of clusters: directory diygiss-
cessor cluste, and an/O cluster TheH, B, andl/O models consist of translated ver-
sions of the protocol tables @V format), and logic to respond to messages, and in
the case of the andl/O models, logic to generate the possible types of requests. The
characteristics of each model is summarizedaipld 2, and the directory protocol
model in Figure 3. The N in the table, is the sum of the numbsemRpandi/O modules.
The protocol model contains 1 cache line. A data bit is added to each model when ver-

Protocol
Specification

Modify Protocol

specification
document

0os
design
v performance
simulation
N
End
optima)
End Y verilog

Figure 5: design workflow

performance simulations uncovered several missing transitions, and deadlock condi-
tions. The formal verification of the protocol was started at the tail end of the perfor-
mance evaluation, and in turn tReL simulation at the tail end of the formal
verification.

After performance evaluation trade-sfmulations were completed, the protocol
went through several revisions. The three primary driving forces behind the changes
were the following: Operating System (OS) requiremeits,synthesis timing issues,
and protocol problems discovered by formal verification.

Having one source for the protocol specification has several important benefits. The
first is that that the diérent tools are always working with the same version of the pro-
tocol. Another is that it is possible to regression verify with the formal verification tool
after each revision to the protocol. Finatiyce formal verification finds a problem in
the protocol, and regression verifies the proposed modification, the revised version of
the protocol is immediately available to tREL simulator

#IMsg DirX MyBit > NewS NewV OMsgl OScl ODstl MemOp
RDSH SHRD any > nop set SRPLY src src RD
RDEX UOWN any > EXCL force ERPC src src RD
WB EXCL only > UOWN clear WBEAK src src WR

Table 1: state machine input format
The protocol specification tables consist of a format line, followed by rows of

ing writeback to the same cache line, and a register that storesf¢hendié between

the number of expected invalidate messages and the number of invalidate acknowledge
messages. TH&RB has the following fields: a flag to indicate if the writeback was the
target of an intervention, and a flag to indicate that there was a read request from the
same processor gating the cache line being written back to memory

2.2 1/0 Protocol
Thel/O section of the protocol implements transfers fronv@mevice into the

memory address space of some program; and also the transfer from mettry to
devices. Th&O section is interfaced to #® cache which it uses for partial writes. Par-
tial 1/0 writes are performed by first obtaining an exclusive copy and then modifying
the exclusive copy in thgd cachel/O can also do uncached block and partial reads,
and writes. Th&/O can be an owner of an exclusive cache line, but can never have a
shared copyTheres a coherent request feif CRB for each outstanding request. The
CRB has fields that are a subset of HRB fields.

As an example, a0 cache line writ&éVINV, that writes a cache line into memory
is shown in Figure 4. Initially the cache line in processibthe directoryH, and the/
O, clusterhave &CEX, EXCL in P1, andINV state, respectivelfrhenH receives aviNy,
and responds 0, with aWINV completionWSPEC message and issues an interven-
tion removelRMVE message t81; or responds toO, with a back-dfintervention
removeBRMVE message, that in turn issues tRi#VE message. The proces$saMVE
response, consists of a remove acknowlétgiK message tO,, and a cached copy
purmged PURGE) transfer message t

In all the cache coherency protocol consists of 58mift types of coherence mes-
sages: 32 of which ensure consistency between processors, and 26 that are used when
moving data from/O devices into coherent space, or coherent spade ttevices.

3. Design Workflow & SMV Pr otocol Model
The protocol specification consists of a collection of multiple input, multiple output

state machine tables, that determine the response to incoming messages in terms of state
changes and outgoing messages. The tables serve as input to a performance, simulator
SMV, verilogRTL state machine generation, and to a text processor specification docu-
ment generator

An overview of the design workflow is shown in Figure 5. During the early phases
of the project, protocol design alternatives were evaluated, for the processor portion of
the protocol, using a trace driven performance simul@tos simulator was turned into
an efective verification tool by monitoring, that no processor in the model is hung. The

3:PURGE 2:WSPEC 3:IRMVE

2:BRMVE

0:EXCL P1
2:BUSY P2

3:RACK 4:RACK
Figure 4: protocol example WINV to an EXCL state

exclusive transfer of ownership messagfeER), thatP2is the exclusive owner of the
cache line. Note that tHESPEC, andEACK (or BRDEX in the back-dfcase) messages
could arrive aP2in either orderAlso theXFER might still be in flight when another
request arrives &t. Another protocol example, an upgrad@GRD) to a sharedHRD)
state is shown in Figure 3. Initially the cache line in procesgdhe directoryH, and
processoP2have a sharegHD, SHRD in P1, andINV state, respectivelyrhenH
receives awPGRD request fronP2, responds t@2 with an upgrade acknowledge
UPACK message, and either issues an invalidate messRgeotoa back-dfinvalidate
BINV message tB2, that in turn issues thBVAL message. In general tiVAL is issued
to all clusters that have their bit set in the directory bit-veTtogeUPACK message con-
tains the number of invalidate acknowled®CK) messages that will be received. In
the case of back-Hfthe BINV message contains a copy of the bit-vector

2.1 Directory Cache Scheme
A directory memory entry can be in several states including the following:

unowned by any clust&rOwN, SHRD, EXCL, and busy intervening or invalidating
(BUSY). If the state iSHRD, the directory stores a bit-vector with a bit set for clusters
that have &HD copy If instead the state XCL or BUSY, it stores théD of the owning
cluster

A processor cache-line can have one of four statessSHD, CEX, and dirty exclu-
sive DEX. A processor executes instructions speculatiwely have several pending
read requests, but the instructions complete in program dittkeprocessor appears to
execute cached memory with strong ordering, i.e. it appears to the programmer that the
memory operations are executed in exactly the same order as the corresponding instruc-
tions were executed in the program. Strong ordering in the processor depends on the
implementation of the coherence protocol in the memory system. It is possible to design
a memory system that does not return data in strongly ordered fashion, allowing weak
consistency models to be employed. In this case the processor uses a fence instruction
to control sequencing of memory operations. The fence instruction guarantees that the
entire system has completed all previous memory instructions, before any subsequent
instructions accessing memory can become visible to the programmer

The cluster coordinator has a read requesebRRB entry for each outstanding
processor read request, and a write requefgtWRB entry for each outstanding write-
back. EaclRRB entry has several fields including the following: a field to indicate if the
particular read request is thegat of an intervention or invalidation request, a flag to
indicate if the data has been given to the proceadiag to indicate that the read request
acknowledge has been received, a flag to indicate that the read regatstitarpend-

2:UPACK 3:INVAL

Figure 3: protocol example, UPGRD to a SHRD state

Cluster Ng)[wor K

network interface

110 memory Memory
interface | interface

processor interface

Figure 1: Architecture of a Distributed Shared Memory machine

that at any time, diérent processor ant caches contain coherent values for the same
memory location, and that the order of writes tdedént locations, as seen from the
programmerare consistent with the memory consistemodel. The coherence proto-
col that we verify is invalidation based, and together with the processor [Hei94], sup-
ports both the sequentially consistent, and release consistent memory models
[Adv93,Gha90,Gha93]rhe directory memory stores information about the state of a
particular cache line. The protocol is non-blocking, i.e. nevdetsufequests at the
directory memorylf the memory does not have ownership, the directory state is modi-
fied to signal that the request was handled and the request is forwarded as an interven-
tion or invalidate to the processor that does have ownership. An invalidate (inv) is
forwarded if a processor has a shared cotherwise thers’an intervention (ivn). In
order to be independent of a specific network topgltigy/protocol does not rely on
network ordering.

A protocol example, a read exclusi®DEX) to an exclusiveEXCL) state is shown
in Figure 2. The numbers before the message, or state, gives the order of receipt. Ini-
tially the cache line in processet, the directoryH, and processar2 have a clean

3:XFER 2:ESPEC 3:IIRDEX

0:EXCL P1
2:BUSY P2

3:EACK 4:EACK
Figure 2: protocol example, RDEX to an EXCL state

exclusive CEX), EXCL in P1, and invalid (NV) state, respectivelyrhenH receives an
RDEX request fronP2, responds t®@2with an exclusive speculative regrEC, and
either issues an exclusive interventiBDEX toP1, or if H lacks resources, forwards the
issuing of the intervention t®2 using a back-dfexclusive interventioBRDEX mes-
sage. Th@RDEX message contains the clusiof PL When theRDEX reache®1, it
replies directly taP2with an exclusive acknowledgeACK), and informdH, using an

properties. In contrast to formal verification: conventional simulation methodology can
be viewed as verifying that a system model conforms to the diagnostic test suite, i.e the
specification of the design consists of the diagnostic tests. The inherent problem with
this approach is the writing of diagnostics thafisigntly cover all the possible behav-

iors of the system. The Everest/Challenge system[Gal92], for example, is testimony to
the fact that conventional simulation techniques can be very powerful. But it is also
clear that parts of that system, i.e. protocols that govern the interaction of the processor
memory and/O sub-systems have so many possible cases of interactions, that it is very
difficult to verify them with conventional simulation.

We chosesMV [McM93] to formally verify the protocol specification. The stron-
gest reason, from an industry perspective, is3hat has been successfully used to ver-
ify the specifications of other cache coherency protocols [Cla93,Lon93,McM91].
Another reason for choosir8MV, is that it can be easily integrated with the existing
design workflow within the companlyinally, the third reason for selectisyV is that
source code is available in case there are problems with the tool.

We did evaluate several other approaches vis-8\#is the VOSS [Bry91,Seg93]
finite state machine trajectory analysis tool, the CANSKur94] finite automatornw-
language containment tool, and the HOL [Gor88] higiréer logic proof assistant.

The VOSS tool was not chosen because it is designed to verify implementations of
interacting state machines, and as such it lacks the proper behavioral and temporal
abstraction capabilities that are necessary to verify protocol specifications. The tool
does not accept non-deterministic state machines, which are essential when verifying
abstract models. Also the tool restricts temporal specifications to the always-in-next-
stateAX operatorbut does not have tl@TL eventually operators (e.g always-eventu-
ally AF, always-condition1-until-condition®U, and exists-eventuallF), that are nec-
essary to verify non-deterministic models.

The COSRN tool is built on powerful theory that uses a property specific refine-
ment capability to counter computational complexatyd the state explosion problem.

We did not pursue the use of C@$Pbecause we could not find any protocol verifica-
tion case studies in the literature comparable to the ones citetli¥or

Finally theHOL approach was not considered because it is manually intensive, and
has mostly been successful in reasoning about data paths; exception [Low90]. Whereas
the protocol specification is control logic dominated, and contains practically no data
paths.

The rest of the paper isganized as follows. @first give a brief description of the
protocol, then in turn describe the verification environment, the formal verification
methodologythe types of design problems uncovered, and finally describe, as seen
from our perspective, the open issues and future research.

2. Distributed Shared Memory Machines
Directory based distributed shared memory machibesif [Len92, Tan95], see

Figure 1, consist of clusters of one or more processors, physical melinecyory

memory a cluster controllet/O devices, and interconnect between théedint clus-

ters. A programmer of BSM class machine is presented with a single, lingeual

address space that is shared among all the processes running on clusters, that have dis-
tributed physical memoryrhe cache coherency protocol is the set of rules that ensure

Using Formal Verification/Analysis Methods
on the Critical Path in System Design: A Case Study

Asgeir Th. Eirikssont and Ken L. McMillan 2

L silicon Graphics Inc., Mountain View, CA
asgeir@sgi.com
2 Cadence Berkeley Labs, BerkeleyCA
mcmillan@cadence.com

Abstract. We present a case study of the use of formal verification methods in a com-
puter system design project. The SMV model checker was integrated into the project
design flowand used to verify a specification of a cache coherency protocol for a dis-
tributed shared memory machine. Both the processor and I/O portions of the protocol
description were verified, within the strict time schedule of the overall project.

We consider the following to be the three main benefits to using the SMV model
checker: it an effective proof reader of Ige specifications, which facilitates faster
design changes; it allows the verification of the interaction of the processors and I/O
early in the design phase; and most importantly it uncovered several protocol specifi-
cation problems. One problem it uncovered, would never have been found in simula-
tion, and because of its subtle symptoms, loss of cohemmimglyt not have been found

on the test floor

1. Introduction
The paper presents the results of integrating the use of formal verification methods

with conventional computer system design methodoldbg type of problem seen in

the test lab, e.g. state machine deadlock, motivated us to evaluate the use of formal ver-
ification methods in the design of computer systems [Gujp@®{]. A problem seenin

the test lab typically involves the interaction of many state machines, and is only
observable after some unusual chain of events. The size of the state space for these
interacting state machines is far togkto make a thorough verification feasible with
conventional simulation methodse\illso observe that future generations of machines;
because of their increased complexitjll exacerbate the verification problem.

The pilot formal verification project involved the verification of a cache coherency
protocol in a directory based, distributed shared memuaghine [Len92,an95]. The
evaluation of available formal verification tools and methodologies, and the design of
the machine, was started at the same time. Then the formal verification of the protocol
with the chosen tool, once the protocol specification was stablee Tonsidered suc-
cessful, the pilot project had to demonstrate a quantum leap increased verification value
due to formal verification methods, within the strict time schedule of the project. Spe-
cifically, the chosen tool and methodology had to find problems in the protocol specifi-
cation, beforeRTL coding commenced.

A system model is formally verified by showing, with mathematical techniques,
that it conforms to the specified properties. As an example, the properties we might wish
to verify for a protocol specification are the absence of deadlock, and that a processor
request, always receives the expected response. Formal verification amounts to exhaus-
tively, for all possible cases, verifying that a particular model satisfies the specified

