
Interpolation and SAT-based Model Checking

K. L. McMillan

Cadence Berkeley Labs

Abstract. We consider a fully SAT-based method of unbounded sym-
bolic model checking based on computing Craig interpolants. In bench-
mark studies using a set of large industrial circuit verification instances,
this method is greatly more efficient than BDD-based symbolic model
checking, and compares favorably to some recent SAT-based model check-
ing methods on positive instances.

1 Introduction

Symbolic model checking [8, 9] is a method of verifying temporal properties of
finite (and sometimes infinite) state systems that relies on a symbolic represen-
tation of sets, typically as Binary Decision Diagrams [7] (BDD’s). By contrast,
bounded model checking [4] can falsify temporal properties by posing the exis-
tence of a counterexample of k steps or fewer as a Boolean satisfiability (SAT)
problem. Using a modern SAT solver, this method is efficient in producing coun-
terexamples [10, 6]. However, it cannot verify properties unless an upper bound
is known on the depth of the state space, which is not generally the case.

This paper presents a purely SAT-based method of unbounded model check-
ing. It exploits a SAT solver’s ability to produce refutations. In bounded model
checking, a refutation is a proof that there is no counterexample of k steps or
fewer. Such a proof implies nothing about the truth of the property in general,
but does contain information about the reachable states of the model. In partic-
ular, given a partition of a set of clauses into a pair of subsets (A,B), and a proof
by resolution that the clauses are unsatisfiable, we can generate an interpolant
in linear time [20]. An interpolant [11] for the pair (A,B) is a formula P with
the following properties:

– A implies P ,
– P ∧B is unsatisfiable, and
– P refers only to the common variables of A and B.

Using interpolants, we obtain a complete method for finite-state reachability
analysis, and hence LTL model checking, based entirely on SAT.

1.1 Related work

SAT solvers have been applied in unbounded model checking in several ways. For
example, they have been used in a hybrid method to detect fixed points, while

the quantifier elimination required for image computations is performed by other
means (e.g., by expansion of the quantifier as ∃v.f = f〈0/v〉 ∨ f〈1/v〉, followed
by simplification). Such methods include [5, 2, 24]. Because of the expense of
quantifier elimination, this approach is limited to models with a small number
of inputs (typically zero or one). By contrast, the present approach is based
entirely on SAT, does not use quantifier elimination, and is not limited in the
number of inputs (examples with thousands of inputs have been verified). SAT
algorithms have also been used to generate a disjunctive decompositions for
BDD-based image computations [13]. Here, BDD’s are not used.

Another approach is based on unfolding the transition relation to the length
of the longest simple path between two states [21]. The fact that this length
has been reached can be verified using a SAT solver. The longest simple path
can, however, be exponentially longer than the diameter of the state space (for
example, the longest simple path for an n-bit register is 2n, while the diameter
is 1). The present method does not require unfolding beyond the diameter of the
state space, and in practice often succeeds with shorter unfoldings.

Finally, Baumgartner, et al. [3], use SAT-based bounded model checking with
a structural method for bounding the depth of the state space. This requires the
circuit in question to have special structure and does not always give useful
bounds. In a suite of benchmarks, we find that the present method successfully
resolves almost all of the model checking problems that could not be resolved
by the structural method.

1.2 Outline

The next section covers resolution proofs and interpolation. Then in section 4
we give a method for unbounded model checking based on interpolation. Finally,
in section 5, we test the method in practice, applying it to the verification of
some properties of commercial microprocessor designs.

2 Interpolation algorithm

To begin at the beginning, a clause is a disjunction of zero or more literals,
each being either a Boolean variable or its negation. We assume that clauses are
non-tautological, that is, no clause contains a variable and its negation. A clause
set is satisfiable when there is a truth assignment to the Boolean variables that
makes all clauses in the set true.

Given two clauses of the form c1 = v ∨ A and c2 = ¬v ∨ B, we say that the
resolvent of c1 and c2 is the clause A∨B, provided A∨B is non-tautological. For
example, the resolvent of a∨b and ¬a∨¬c is b∨¬c, while a∨b and ¬a∨¬b have
no resolvent, since b ∨ ¬b is tautological. It is easy to see that any two clauses
have at most one resolvent. The resolvent of c1 and c2 (if it exists) is a clause
that is implied by c1 ∧ c2 (in fact, it is exactly (∃v)(c1 ∧ c2)). We will call v the
pivot variable of c1 and c2.

Definition 1. A proof of unsatisfiability Π for a set of clauses C is a directed
acyclic graph (VΠ , EΠ), where VΠ is a set of clauses, such that

– for every vertex c ∈ VΠ , either
• c ∈ C, and c is a root, or
• c has exactly two predecessors, c1 and c2, such that c is the resolvent of

c1 and c2, and
– the empty clause is the unique leaf.

Theorem 1. If there is a proof of unsatisfiability for clause set C, then C is
unsatisfiable.

A SAT solver, such as CHAFF [17], or GRASP [22], is a complete decision
procedure for clause sets. In the satisfiable case, it produces a satisfying assign-
ment. In the unsatisfiable case, it can produce a proof of unsatisfiability [16,
25]. This, in turn, can be used to generate an interpolant by a very simple pro-
cedure [20]. This procedure produces a Boolean circuit whose gates correspond
to the vertices (i.e., resolution steps) in the proof. The procedure given here is
similar but not identical to that in [20].

Suppose we are given a pair of clause sets (A,B) and a proof of unsatisfiability
Π of A ∪ B. With respect to (A,B), say that a variable is global if it appears
in both A and B, and local to A if it appears only in A. Similarly, a literal is
global or local to A depending on the variable it contains. Given any clause c,
we denote by g(c) the disjunction of the global literals in c and by l(c) the
disjunction literals local to A.

For example, suppose we have two clauses, c1 = (a ∨ b ∨ ¬c) and c2 =
(b ∨ c ∨ ¬d), and suppose that A = {c1} and B = {c2}. Then g(c1) = (b ∨ ¬c),
l(c1) = (a), g(c2) = (b ∨ c) and l(c2) = False.

Definition 2. Let (A,B) be a pair of clause sets and let Π be a proof of unsat-
isfiability of A∪B, with leaf vertex False. For all vertices c ∈ VΠ , let p(c) be a
boolean formula, such that

– if c is a root, then
• if c ∈ A then p(c) = g(c),
• else p(c) is the constant True.

– else, let c1, c2 be the predecessors of c and let v be their pivot variable:
• if v is local to A, then p(c) = p(c1) ∨ p(c2),
• else p(c) = p(c1) ∧ p(c2).

The Π-interpolant of (A,B), denoted Itp(Π,A, B) is p(False).

Theorem 2. For all (A,B), a pair of clause sets, and Π, a proof of unsatisfi-
ability of A ∪B, Itp(Π,A, B) is an interpolant for (A,B).

The formula Itp(Π,A, B) can be computed in time O(N + L), where N is
the number of vertices in the proof |VΠ | and L is the total number of literals in
the proof Σc∈VΠ

|c|. Its circuit size is also O(N + L). Of course, the size of the
proof Π is exponential in the size of A ∪B in the worst case.

3 Model checking based on interpolation

Bounded model checking and interpolation can be combined to produce an over-
approximate image operator that can be used in symbolic model checking.

The intuition behind this is as follows. A bounded model checking problem
consists of a set of constraints – initial constraints, transition constraints, final
constraints. These constraints are translated to conjunctive normal form, and,
as appropriate, instantiated for each time frame 0 . . . k, as depicted in Figure 1.
In the figure, I represents the initial constraint, T the transition constraint, and
F the final constraint. Now suppose that we partition the clauses so that the

s0 sk

I F

s1
...

T T T T T T T

Fig. 1. Bounded model checking.

initial constraint and first instance of the transition constraint are in set A, while
the final condition and the remaining instances of the transition constraint are
in set B, as depicted in Figure 2. The common variables of A and B are exactly
the variables representing state s1.

s0 sk

I FT T T T T T T

p

A B

Fig. 2. Computing image by interpolation.

Using a SAT solver, we prove the clause set is unsatisfiable (i.e., there are
no counterexamples of length k). From the proof we derive an interpolant P
for (A,B). Since P is implied by the initial condition and the first transition
constraint, it follows that P is true in every state reachable from the initial
state in one step. That is, P is an over-approximation of the forward image of I.
Further, P and B are unsatisfiable, meaning that no state satisfying P can reach
a final state in k − 1 steps.

This over-approximate image operation can be iterated to compute an over-
approximation of the reachable states. Because of the approximation, we may
falsely conclude that F is reachable. However, by increasing k, we must even-
tually find a true counterexample (a path from I to F) or prove that F is not
reachable (i.e., the property is true), as we shall see.

3.1 Basic model checking algorithm

The LTL model checking problem can be reduced to finding an accepting run of
a finite automaton. This translation has has been extensively studied [18, 23, 14],
and will not be described here. Moreover, we need consider only the problem of
finding finite counterexamples to safety properties. Liveness properties can then
be handled by the method of [1]. We assume that the problem of safety property
verification is posed in terms of a one-letter automaton on finite words, such that
the property is false exactly when the automaton has an accepting run. Such a
construction can be found, for example, in [15].

The automaton itself will be represented implicitly by Boolean formulas.
The state space of the automaton is defined by an indexed set of Boolean
variables V = {v1, . . . , vn}. A state S is a corresponding vector (s1, . . . , sn)
of Boolean values. A state predicate P is a Boolean formula over V . We will
write P (W) to denote P 〈wi/vi〉 (that is, p with wi substituted for each vi). We
also assume an indexed set of “next state” variables V ′ = {v′1, . . . , v′n}, disjoint
from V . A state relation R is a Boolean formula over V and V ′. We will write
R(W,W ′) to denote R〈wi/vi, w

′
i/v′i〉.

For our purposes, an automaton is a triple M = (I, T, F), where the ini-
tial constraint I and final constraint F are state predicates, and the transi-
tion constraint T is a state relation. A run of M , of length k, is a sequence of
states s0 . . . sk such that I(s0) is true, and for all 0 ≤ i < k, T (si, si+1) is true,
and F (sk) is true. In bounded model checking, we would translate the existence
of a run of length j ≤ i ≤ k into a Boolean satisfiability problem by introducing a
new indexed set of variables Wi = {wi1, . . . , win}, for 0 ≤ i ≤ k. A run of length
in the range j . . . k exists exactly when the following formula is satisfiable:1

Bmck
j = I(W0) ∧

 ∧
0≤i<k

T (Wi,Wi+1)

 ∧

 ∨
j≤i≤k

F (Wi)


We will divide this formula into two parts: one formula representing the possible
prefixes of a run, and another representing the possible suffixes. The possible
prefixes of length l are characterized by the following formula:

Prefl(M) = I(W−l) ∧

 ∧
−l≤i<0

T (Wi,Wi+1)


That is, a prefix begins in an initial state W−l and ends in any state W0. The
possible suffixes of length j . . . k are characterized by the following formula:

Suffk
j (M) =

 ∧
0≤i<k

T (Wi,Wi+1)

 ∧

 ∨
j≤i≤k

F (Wi)


1 Actually, this characterization is correct only if transition relation is total. In this

paper we will assume that transition relations are total by construction. The gener-
alization to partial transition relations is not difficult, however.

A suffix begins in any state W0 and ends in some final state Wi, where j ≤ i ≤ k.
To apply a SAT solver, we must translate Boolean formulas into conjunctive

normal form. Here, we simply assume the existence of some function Cnf that
translates a Boolean formula f into a set of clauses Cnf(f, U), where U is a
set of “fresh” variables, not occurring in f . The translation function Cnf must
have the property that (∃U. Cnf(f, U)) ≡ f . That is, the satisfying assignments
of Cnf(f, U) are exactly those of f , if we ignore the fresh variables. A suitable
translation that is linear in the formula size can be found in [19]. What follows,
however, does not depend on the precise translation function.

A procedure to check the existence of a finite run of M is shown in Figure 3. In
the figure, U1 and U2 are assumed to be sets of fresh variables, disjoint from each
other and all the Wi’s. The procedure is parameterized by a fixed value k ≥ 0.
We will show that the procedure must terminate for sufficiently large values of k,
though for small values it may abort, without deciding the existence of a run.
The procedure runs as follows. First, we check that there is no run of length zero.
Assuming there is not, we set our initial approximation R of the reachable states
to be I, the initial states. We then compute an over-approximation of the forward
image of R. This is done by treating R as the initial condition and checking the
satisfiability of the formula Pref1(M)∧Suffk

0(M). If this is satisfiable there is
a run of length 1 . . . k + 1, starting at R and ending at F . In the first iteration,
when R = I, we have found a run of the automaton, and we terminate. If R 6= I,
we abort, without deciding the existence of a run.

On the other hand, suppose that Pref1(M) ∧ Suffk
0(M) is unsatisfiable.

Using the proof of unsatisfiability Π, we construct a Π-interpolant P for the
pair (Pref1(M),Suffk

0(M)). Since P is a formula that is implied by R(W−1)
and T (W−1,W0), we know that P holds in all states W0 reachable from R in one
step (or put another way, it is an over-approximation of the states reachable in
one step). Further, since P and Suffk

0(M) are inconsistent, no state satisfying P
can reach F in up to k steps (that is, P is an under-approximation of the states
that are backward reachable from F in up to k steps). Thus, we obtain a new
approximation R ∨ P 〈V/W0〉 of the reachable states. If a fixed point is reached,
R is an inductive invariant. Since no state in R satisfies F (nor can reach F in up
to k steps), we terminate, indicating that no run exists. Otherwise, we continue
the procedure with the new value of R.

Theorem 3. For k > 0, if FiniteRun(M ,k) terminates without aborting, it
returns True iff M has a run.

Proof. Suppose the procedure returns True. Either I∧F is satisfiable, in which
case M has a run of length 0, or Bmck

1(M) is satisfiable, hence M has a run of
length 1 . . . k. Now, suppose the procedure returns False. We can show:

1. I implies R (trivial).
2. R is an invariant of T (in other words, R(s) and T (s, s′) imply R(s′)). Since

Pref1(M ′) implies P , it follows that, for all states s, s′, R(s) ∧ T (s, s′) ⇒
R′(s′). Thus, when R′ implies R, we have R(s) and T (s, s′) implies R(s′).

procedure FiniteRun(M = (I, T, F), k > 0)
if I ∧ F is satisfiable, return True
let R = I
while true

let M ′ = (R, T, F)
let A = Cnf(Pref1(M

′), U1)

let B = Cnf(Suffk
0(M ′), U2)

Run SAT on A ∪B. If satisfiable, then
if R = I return True else abort

else (if A ∪B unsatisfiable)
let Π be a proof of unsatisfiability of A ∪B
let P = Itp(Π, A, B)
let R′ = P 〈W/W0〉.
if R′ implies R return False
let R = R ∨R′

end

Fig. 3. Procedure for existence of a finite run

3. R∧F is unsatisfiable. Initially, R = I and I∧F is unsatisfiable. At each iter-
ation, we know P ∧Suffk

0(M ′) is unsatisfiable, hence R′ ∧F is unsatisfiable
(assuming T is total).

It follows by induction that M has no run of any length. 2

We can also show that the procedure must terminate for sufficiently large
values of k. Let us define the reverse depth of M as the maximum length of the
shortest path from any state to a state satisfying F . This can also be viewed as
the depth of a breadth-first backward traversal from F . This depth is bounded
by 2|V | but in most practical cases is much smaller.

Theorem 4. For every M , there exists k such that FiniteRun(M ,k) termi-
nates.

Proof. Let k be the reverse depth of M . In the first iteration, if the SAT problem
is satisfiable, the procedure terminates. Otherwise, R′ cannot reach F in k steps.
Since k is the reverse depth, it follows that R′ cannot reach F in any number of
steps. Thus, at the next iteration R cannot reach F in k + 1 steps, so the SAT
problem must again be unsatisfiable. Carrying on by induction, we conclude that
at every iteration, R cannot reach F in up to k +1 steps. Thus R must continue
to increase (i.e., become weaker) until it reaches a fixed point, at which time the
procedure terminates. 2.

Thus, when procedure FiniteRun aborts, we have only to increase the value
of k. If we continue to do this, eventually FiniteRun will terminate. The amount
by which to increase k has some bearing on performance. If we increase it by
too little, we waste time on aborted runs. If we increase it by too much the

resulting SAT problems may become intractable. In practice, FiniteRun often
terminates for values of k substantially smaller than the reverse depth.

3.2 Optimizations

The basic algorithm can be improved in several ways. First, the interpolants are
typically highly redundant, in that many subformulas are syntactically distinct
but logically equivalent. Eliminating redundant subformulas thus greatly reduces
the size of the interpolant. There is a large literature on identifying logically
equivalent formulas. For this paper, a simple method of building BDD’s up to a
small fixed size was used.

Second, we can replace Suffk
0 with Suffk

j , for some j > 0 (i.e., we test the
property for times greater than or equal to j). In most cases, setting j = k to
produces the best results, since the SAT solver only needs to refute the final
condition at a single step, rather than at all steps. Unfortunately, if j > 0,
there is no guarantee of termination, except when the runs of the automaton are
stuttering closed. In practice divergence has been observed for a few hardware
models with two-phase clocks. This was correctable by setting j = k−1. Clearly,
some automated means is needed to set the value of j, but as yet this has not
been developed.

Third, we can use “frontier set simplification”. That is, it suffices to compute
the forward image approximation of the “new” states, rather than the entire
reachable set R. In fact, any set intermediate between these will do. Since we
use arbitrary Boolean formulas rather than BDD’s, there is no efficient method
available for this simplification. In this work, we simply use R′ (the previous
image result) in place of R.

Finally, note that the formula Suffk
j (M ′) is invariant from one iteration of

the next. It constitutes most of the CNF formula that the SAT solver must
refute. Clearly it is inefficient to rebuild this formula at each iteration. A better
approach would be to keep all the clauses of Suffk

j (M ′), and all the clauses
inferred from these, from one run of the SAT solver to the next. That was not
done here because it would require modification of the SAT solver. However, the
potential savings in run time is substantial.

4 Practical experience

The performance of the interpolation-based model checking procedure was tested
on two sets of benchmark problems derived from commercial microprocessor de-
signs. The first is a sampling of properties from the compositional verification of
a unit of the Sun PicoJava II microprocessor.2 This unit is the ICU, which man-
ages the instruction cache, prefetches instructions, and does partial instruction
decoding. Originally, the properties were verified by standard symbolic model

2 The tools needed to construct the benchmark examples from the PicoJava II source
code can be found at http://www-cad.eecs.berkeley.edu/~kenmcmil.

checking, using manual directives to remove irrelevant parts of the logic. To make
difficult benchmark examples, these directives were removed, and a neighboring
unit, the instruction folding unit (IFU), was added. The IFU reads instruction
bytes from the instruction queue, parses the byte stream into separate instruc-
tions and divides the instructions into groups that can be executed in a single
cycle. Inclusion of the IFU increases the number of state variables in the “cone of
influence” substantially, largely by introducing dependencies on registers within
the ICU itself. It also introduces a large amount of irrelevant combinational logic.

Twenty representative properties were chosen as benchmarks. All are safety
properties, of the form Gp, where p is a formula involving only current time
and the next time (usually only current time). The number of state variables in
these problems after the cone of influence reduction ranges from around 50 to
around 350. All the properties are true. Tests were performed on a Linux work-
station with a 930MHz Pentium III processor and 512MB of available memory.
Unbounded BDD-based symbolic model checking was performed using the Ca-
dence SMV system. SAT solving was performed using an implementation of the
BerkMin algorithm [12], modified to produce proofs of unsatisfiability.

No property could be verified by standard symbolic model checking, within
a limit of 1800 seconds. On the other hand, of the 20 properties, 19 were suc-
cessfully verified by the interpolation method.

Figure 4 shows a comparison of the interpolation method against another
method called proof-based abstraction that uses SAT to generate abstractions
which are then verified by standard symbolic model checking [16]. This method
is more effective than simple BDD-based model checking, successfully verify-
ing 18 of the 20 properties. In the figure, each point represents one benchmark
problem, the X axis representing the time in seconds taken by the proof-based
abstraction method, and the Y axis representing the time in seconds taken by
the interpolation method.3 A time value of 1000 indicates a time-out after 1000
seconds. Points below the diagonal indicate an advantage for the present method.
We observe 16 wins for interpolation and 3 for proof-based abstraction, with one
problem solved by neither method. In five or six cases, the interpolation method
wins by two orders of magnitude.

Figure 5 compares the performance of the interpolation approach with re-
sults previously obtained by Baumgartner et al. [3] on a set of model checking
problems derived from the IBM Gigahertz Processor. Their method involved
a combination of SAT-based bounded model checking, structural methods for
bounding the depth of the state space, and target enlargement using BDD’s.
Each point on the graph represents the average verification or falsification time
for a collection of properties of the same circuit model. The average time re-
ported by Baumgartner et al. is on the X axis, while the average time for the

3 Times for the interpolation method include only the time actually used by the SAT
solver. Overhead in generating the unfoldings is not counted, since this was imple-
mented inefficiently. An efficient implementation would re-use the unfolding from
one iteration to the next, thus making the unfolding overhead negligible. Time to
generate the interpolants was negligible. A value of j = k was used for these runs.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Proof-based abstraction (s)

P
ro

of
-p

ar
tit

io
n

m
et

ho
d

(s
)

Fig. 4. Run times on PicoJava II benchmarks.

present method is on the Y axis.4 A point below the diagonal line represents
a lower average time for the interpolation method for one benchmark set. We
note 21 wins for interpolation and 3 for the structural method. In a few cases the
interpolation method wins by two orders of magnitude. A time of 1000 seconds
indicates that the truth of one or more properties in the benchmark could not be
determined (either because of time-out or incompleteness). Of the 28 individual
properties that could not be resolved by Baumgartner et al., all but one are
successfully resolved by the proof partition method.

Finally, we compare the interpolation method against proof-based abstrac-
tion on the IBM benchmarks. The results are shown in Figure 6. Though the
results are mixed, we find that overall the advantage goes to proof-based ab-
straction (both successfully solve the same set of problems). This appears to
be due to the fact that a large number of properties in the benchmark set are
false (i.e., have counterexamples). The proof-based abstraction method tends
to find counterexamples more quickly because in effect the BDD-based model
checker quickly guides the bounded model checker to the right depth, while the
interpolation method systematically explores all depths. Figure 7 compares the
two methods on only those individual properties that are true, showing an ad-
vantage for interpolation. This suggests that a hybrid method might provide the
best results overall.

4 The processor speeds for the two sets of experiments are slightly different. Baum-
gartner et al. used an 800MHz Pentium III, as compared to a 930 MHz Pentium III
used here. No adjustment has been made for CPU speed. A value of j = k − 1 was
used for these runs, since one problem was found to diverge for j = k.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Baumgartner et al. (s)

P
ro

of
-p

ar
tit

io
n

m
et

ho
d

(s
)

Fig. 5. Run times on IBM Gigahertz Processor benchmarks.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Proof-based abstraction (s)

P
ro

of
-p

ar
tit

io
n

m
et

ho
d

(s
)

Fig. 6. Run times on IBM Gigahertz Processor benchmarks.

5 Conclusion

We have observed that interpolation and bounded model checking can be com-
bined to allow unbounded model checking. This method was seen in two micro-
processor verification benchmark studies to be more efficient than BDD-based
model checking and some recently developed SAT-based methods, for true prop-
erties.

For future work, it is interesting to consider what other information can be
extracted from proofs of unsatisfiability that might be useful in model checking.
For example, it is possible to derive an abstraction of the transition relation
from a bounded model checking refutation, using interpolation. Initial studies
have shown that this abstraction is difficult to handle with current BDD-based
model checking methods, which rely on a certain structure in the transition

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Proof-based abstraction (s)

P
ro

of
-p

ar
tit

io
n

m
et

ho
d

(s
)

Fig. 7. Run times on IBM Gigahertz Processor true properties.

relation formula. If this difficulty can be overcome, however, it might lead to
an improvement in the proof-based abstraction method. It is also conceivable
that interpolation in first-order theories could be applied in infinite-state model
checking.

Acknowledgment The author would like to thank Jason Baumgartner of
IBM for providing the Gigahertz Processor benchmark problems.

References

1. C. Artho A. Biere and V. Schuppan. Liveness checking as safety checking. In
Formal Methods for Industrial Critical Systems (FMICS’02), July 2002.

2. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on
SAT-solvers. In TACAS 2000, volume 1785 of LNCS. Springer-Verlag, 2000.

3. J. Baumgartner, A. Kuehlmann, and J. Abraham. Property checking via structural
analysis. In Computer-Aided Verification (CAV 2002), pages 151–165, 2002.

4. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In TACAS’99, volume 1579 of LNCS, pages 193–
207, 1999.

5. P. Bjesse. Symbolic model checking with sets of states represented as formulas.
Technical Report CS-1999-100, Department of Computer Science, Chalmers tech-
nical university, March 1999.

6. P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in an alpha microprocessor
using satisfiability solvers. In Computer Aided Verification (CAV 2001), 2001.

7. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8), 1986.

8. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proceedings of the Fifth Annual Sym-
posium on Logic in Computer Science, June 1990.

9. O. C., C. Berthet, and J.-C. Madre. Verification of synchronous sequential ma-
chines based on symbolic execution. In Joseph Sifakis, editor, Automatic Verifica-

tion Methods for Finite State Systems, International Workshop, Grenoble, France,
volume 407 of Lecture Notes in Computer Science. Springer-Verlag, June 1989.

10. F. Copty, L. Fix, Fraer R, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y.
Vardi. Benefits of bounded model checking in an industrial setting. In Computer
Aided Verification (CAV 2001), pages 436–453, 2001.

11. W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theorem. J.
Symbolic Logic, 22(3):250–268, 1957.

12. E.Goldberg and Y.Novikov. BerkMin: a fast and robust SAT-solver. In DATE
2002, pages 142–149, 2002.

13. A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-based image computation with
application in reachability analysis. In FMCAD 2000, pages 354–371, 2000.

14. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
Model Checking: 1020 States and Beyond. In Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer Science, pages 1–33, Washington, D.C.,
1990. IEEE Computer Society Press.

15. O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291–314, 2001.

16. K. L. McMillan and Nina Amla. Automatic abstraction without counterexamples.
In TACAS’03, pages 2–17, 2003.

17. M. W. Moskewicz, C. F. Madigan, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Design Automation Conference, pages 530–535, 2001.

18. A. Pnueli O. Lichtenstein. Checking that finite state concurrent programs satisfy
their linear specification. In Principles of Programming Languages (POPL ’85),
pages 97–107, 1985.

19. D. Plaisted and S. Greenbaum. A structure preserving clause form translation.
Journal of Symbolic Computation, 2:293–304, 1986.

20. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symbolic Logic, 62(2):981–998, June 1997.

21. M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using induction
and a SAT-solver. In Formal Methods in Computer Aided Design, 2000.

22. J. P. M. Silva and K. A. Sakallah. GRASP–a new search algorithm for satisfia-
bility. In Proceedings of the International Conference on Computer-Aided Design,
November 1996, 1996.

23. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Logic in Computer Science (LICS ’86), pages 322–331, 1986.

24. P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagrams
and SAT procedures for efficient symbolic model checking. In Computer Aided
Verification, pages 124–138, 2000.

25. L. Zhang and S. Malik. Validating sat solvers using an independent resolution-
based checker: Practical implementations and other applications. In DATE’03,
pages 880–885, 2003.

